Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pharm ; 605: 120827, 2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34171428

ABSTRACT

Neuroinflammation in Alzheimer's disease (AD) revamped the role of a preventive therapeutic action of non steroidal anti-inflammatory drugs; flurbiprofen could delay AD onset, provided its access to brain is enhanced and systemic exposure limited. Nasal administration could enable direct drug access to central nervous system (CNS) via nose-to-brain transport. Here, we investigated the insufflation, deposition, dissolution, transmucosal permeation, and in vivo transport to rat brain of flurbiprofen from nasal powders combined in an active device. Flurbiprofen sodium spray-dried microparticles as such, or soft pellets obtained by agglomeration of drug microparticles with excipients, were intranasally administered to rats by the pre-metered insufflator device. Blood and brain were collected to measure flurbiprofen levels. Excipient presence in soft pellets lowered the metered drug dose to insufflate. Nevertheless, efficiency of powder delivery by the device, measured as emitted fraction, was superior with soft pellets than microparticles, due to their coarse size. Both nasal powders resulted into rapid flurbiprofen absorption. Absolute bioavailability was 33% and 58% for microparticles and pellets, respectively. Compared to intravenous flurbiprofen, the microparticles were more efficient than soft pellets at enhancing direct drug transport to CNS. Direct Transport Percentage index evidenced that more than 60% of the intranasal dose reached the brain via direct nose-to-brain transport for both powders. Moreover, remarkable drug concentrations were measured in the olfactory bulb after microparticle delivery. Bulb connection with the entorhinal cortex, from where AD initiates, makes flurbiprofen sodium administration as nasal powder worth of further investigation in an animal model of neuroinflammation.


Subject(s)
Flurbiprofen , Insufflation , Administration, Intranasal , Animals , Brain , Drug Delivery Systems , Nose , Rats
2.
Int J Biol Macromol ; 129: 267-280, 2019 May 15.
Article in English | MEDLINE | ID: mdl-30726749

ABSTRACT

The aim of the present study was the development of human serum albumin nanoparticles (HSA NPs) as nose-to-brain carrier. To strengthen, the efficacy of nanoparticles as drug delivery system, the influence of chitosan (CS) coating on the performance of HSA NPs was investigated for nasal application. HSA NPs were prepared by desolvation technique. CS coating was obtained adding the CS solution to HSA NPs. The mean particle sizes was 241 ±â€¯18 nm and 261 ±â€¯8 nm and the ζ-potential was -47 ±â€¯3 mV and + 45 ±â€¯1 mV for HSA NPs and CS-HSA NPs, respectively. The optimized formulations showed excellent stability upon storage both as suspension and as freeze-dried product after 3 months. The mucoadhesion properties were assessed by turbidimetric and indirect method. NPs were loaded with sulforhodamine B sodium salt as model drug and the effect of CS coating was investigated performing release studies, permeation and uptake experiments using Caco-2 and hCMEC/D3 cells as model of the nasal epithelium and blood-brain barrier, respectively. Furthermore, ex vivo diffusion experiments have been carried out using rabbit nasal mucosa. Finally, the ability of the formulations to reversibly open tight and gap junctions was explored by western blotting and RT-PCR analyzing in both Caco-2 and hCMEC/D3 cells.


Subject(s)
Chitosan , Drug Carriers , Drug Delivery Systems , Nanoparticles , Serum Albumin, Human , Administration, Intranasal , Animals , Blood-Brain Barrier/metabolism , Brain/drug effects , Brain/metabolism , Caco-2 Cells , Chitosan/chemistry , Drug Carriers/chemistry , Drug Liberation , Humans , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Rabbits , Serum Albumin, Human/chemistry
3.
Pharmaceutics ; 11(2)2019 02 18.
Article in English | MEDLINE | ID: mdl-30781722

ABSTRACT

Drug delivery to the brain represents a challenge, especially in the therapy of central nervous system malignancies. Simvastatin (SVT), as with other statins, has shown potential anticancer properties that are difficult to exploit in the central nervous system (CNS). In the present work the physico⁻chemical, mucoadhesive, and permeability-enhancing properties of simvastatin-loaded poly-ε-caprolactone nanocapsules coated with chitosan for nose-to-brain administration were investigated. Lipid-core nanocapsules coated with chitosan (LNCchit) of different molecular weight (MW) were prepared by a novel one-pot technique, and characterized for particle size, surface charge, particle number density, morphology, drug encapsulation efficiency, interaction between surface nanocapsules with mucin, drug release, and permeability across two nasal mucosa models. Results show that all formulations presented adequate particle sizes (below 220 nm), positive surface charge, narrow droplet size distribution (PDI < 0.2), and high encapsulation efficiency. Nanocapsules presented controlled drug release and mucoadhesive properties that are dependent on the MW of the coating chitosan. The results of permeation across the RPMI 2650 human nasal cell line evidenced that LNCchit increased the permeation of SVT. In particular, the amount of SVT that permeated after 4 hr for nanocapsules coated with low-MW chitosan, high-MW chitosan, and control SVT was 13.9 ± 0.8 µg, 9.2 ± 1.2 µg, and 1.4 ± 0.2 µg, respectively. These results were confirmed by SVT ex vivo permeation across rabbit nasal mucosa. This study highlighted the suitability of LNCchit as a promising strategy for the administration of simvastatin for a nose-to-brain approach for the therapy of brain tumors.

4.
J Drug Target ; 27(9): 984-994, 2019 11.
Article in English | MEDLINE | ID: mdl-30691325

ABSTRACT

Neuroinflammation occurs in the early stages of Alzheimer's disease (AD). Thus, anti-inflammatory drugs in this asymptomatic initial phase could slow down AD progression, provided they enter the brain. Direct nose-to-brain drug transport occurs along olfactory or trigeminal nerves, bypassing the blood-brain barrier. Nasal administration may enable the drug to access the brain. Here, flurbiprofen powders for nose-to-brain drug transport in early AD-related neuroinflammation were studied. Their target product profile contemplates drug powder deposition in the nasal cavity, prompt dissolution in the mucosal fluid and attainment of saturation concentration to maximise diffusion in the tissue. Aiming to increase drug disposition into brain, poorly soluble flurbiprofen requires the construction of nasal powder microparticles actively deposited in nose for prompt drug release. Two groups of powders were formulated, composed of flurbiprofen acid or flurbiprofen sodium salt. Two spray dryer apparatuses, differing for spray and drying mechanisms, and particle collection, were applied to impact on the characteristics of the microparticulate powders. Flurbiprofen sodium nasal powders disclosed prompt dissolution and fast ex vivo transport across rabbit nasal mucosa, superior to the acid form, in particular when the powder was prepared using the Nano B-90 spray dryer at the lowest drying air temperature.


Subject(s)
Alzheimer Disease/drug therapy , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Flurbiprofen/administration & dosage , Inflammation/drug therapy , Administration, Intranasal , Alzheimer Disease/pathology , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Brain/metabolism , Drug Liberation , Flurbiprofen/chemistry , Flurbiprofen/pharmacokinetics , Inflammation/pathology , Nasal Mucosa/metabolism , Rabbits , Solubility , Tissue Distribution
5.
Eur J Pharm Sci ; 113: 2-17, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-28942007

ABSTRACT

In the field of nasal drug delivery, among the preparations defined by the European Pharmacopoeia, nasal powders facilitate the formulation of poorly water-soluble active compounds. They often display a simple composition in excipients (if any), allow for the administration of larger drug doses and enhance drug diffusion and absorption across the mucosa, improving bioavailability compared to nasal liquids. Despite the positive features, however, nasal products in this form still struggle to enter the market: the few available on the market are Onzetra Xsail® (sumatriptan) for migraine relief and, for the treatment of rhinitis, Rhinocort® Turbuhaler® (budesonide), Teijin Rhinocort® (beclomethasone dipropionate) and Erizas® (dexamethasone cipecilate). Hence, this review tries to understand why nasal powder formulations are still less common than liquid ones by analyzing whether this depends on the lack of (i) real evidence of superior therapeutic benefit of powders, (ii) therapeutic and/or commercial interest, (iii) efficient manufacturing methods or (iv) availability of suitable and affordable delivery devices. To this purpose, the reader's attention will be guided through nasal powder formulation strategies and manufacturing techniques, eventually giving up-to-date evidences of therapeutic efficacy in vivo. Advancements in the technology of insufflation devices will also be provided as nasal drug products are typical drug-device combinations.


Subject(s)
Chemistry, Pharmaceutical/methods , Equipment and Supplies , Excipients/chemistry , Administration, Intranasal , Animals , Beclomethasone/pharmacology , Biological Availability , Budesonide/pharmacology , Dexamethasone/analogs & derivatives , Dexamethasone/pharmacology , Drug Carriers/chemistry , Drug Liberation , Humans , Mucous Membrane/metabolism , Nasal Absorption , Permeability , Powders/chemistry , Rhinitis/drug therapy , Solubility , Water/chemistry
6.
J Psychopharmacol ; 30(2): 112-27, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26755548

ABSTRACT

Neurotensin is a tridecapeptide originally identified in extracts of bovine hypothalamus. This peptide has a close anatomical and functional relationship with the mesocorticolimbic and nigrostriatal dopamine system. Neural circuits containing neurotensin were originally proposed to play a role in the mechanism of action of antipsychotic agents. Additionally, neurotensin-containing pathways were demonstrated to mediate some of the rewarding and/or sensitizing properties of drugs of abuse.This review attempts to contribute to the understanding of the role of neurotensin and its receptors in drug abuse. In particular, we will summarize the potential relevance of neurotensin, its related compounds and neurotensin receptors in substance use disorders, with a focus on the preclinical research.


Subject(s)
Neurotensin/metabolism , Receptors, Neurotensin/metabolism , Substance-Related Disorders/physiopathology , Animals , Antipsychotic Agents/pharmacology , Brain/metabolism , Dopamine/metabolism , Humans , Reward
SELECTION OF CITATIONS
SEARCH DETAIL
...