Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37255261

ABSTRACT

As an evolution, biodegradable implants need to maximize mechanical performance thereby may lead to confusion in selection of the biodegradable material and implant design to the fracture site. This requires selecting a unique fixation configuration to fit within the fractured bone, factors of which can be bone-plate clearance, interfragmentary gap, alteration in screw fixation position and variation in the number of screws whose configuration optimization can re-maximize the mechanical performance of the biodegradable implant. Therefore, these factors have been optimized based on the induced minimum stress using the finite element method-based simulation for which biodegradable embossed locking plates (BELCP) via screws made of Mg-alloy have been fitted over two fragments of femur body (as hollow cylindrical cortical bone). An average human weight of 62 kg is applied to one segment of the femur for all different configurations of each factor, where another segment is assumed to be fixed. By this simulation, the most optimal fixation configuration was found at a minimum induced stress value of 41.96 MPa which is approximately 85%, 18%, 6% and 48% respectively less than all maximum stress induced configurations in each of the factor. This optimized configuration was at the minimum clearance between bone and plate with a 3 mm interfragmentary gap using 8 screws where the locking screw begins to apply from the center of the BELCP. Overall, BELCP may be a better biodegradable implant plate for bone fracture fixation with these optimized fixation configurations as the improved mechanical performance after experimental validation.

2.
Comput Methods Biomech Biomed Engin ; 25(6): 603-618, 2022 May.
Article in English | MEDLINE | ID: mdl-34486894

ABSTRACT

In the current revolution of internal fixation implant in orthopaedics, a biodegradable implant is the most awaited and exceptional medical device where biodegradable material has paid more attention to the success of a biodegradable implant than the design of a biodegradable bone implant plate. By far, LCP is the most traditionally used implant plate (using non-biodegradable material) because of its experimental success, but not with qualified biodegradable material (Mg-alloy). This lack of mechanical performance is a major drawback that can be rectified by better structural design. This will help avoid few other problems as well. Therefore, with proper consideration, the LCP has been added to a semicircular filleted longitudinally centered embossed (LCE) structure to enhance overall mechanical performance that can help emphasize mechanical support even after continuous degradation when applied in a physiological environment. For mechanical verification of this advanced design of biodegradable bone implant plate, four-point bending test (4PBT) and axial compression test (ACT) have been performed using FEM on LCELCP, LCP, continuously degraded (CD)-LCELCP, and CD-LCP. LCELCP showed reduced stress of about 22% and 10% in 4PBT and ACT, respectively, compared to LCP. CD-LCELCP is safe during ACT over 6 months of continuous degradation when the degradation rate is assumed to be 4 mm/year. These results also ensured accuracy using mesh convergence and also mesh checked for quality assurance. Overall, LCELCP can be considered as a biodegradable bone implant plate because of its superior performance, if its ultimate validation is carried out through animal/human trials as future work.


Subject(s)
Absorbable Implants , Bone Plates , Animals , Biomechanical Phenomena , Finite Element Analysis , Fracture Fixation, Internal/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...