Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Biol Interact ; 324: 109092, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32278739

ABSTRACT

Human butyrylcholinesterase (HuBChE) is a stoichiometric bioscavenger that protects from the toxicity of nerve agents. Non-human primates are suitable models for toxicity studies that cannot be performed in humans. We evaluated the biochemical properties of native macaque (MaBChE) tetramers, compared to recombinant MaBChE monomers, PEGylated recombinant MaBChE tetramers and monomers, and native HuBChE tetramers. Km and kcat values for butyrylthiocholine were independent of subunit assembly status. The Km for all forms of MaBChE was about 70 µM, compared to 13 µM for HuBChE. The kcat was about 100,000 min-1 for MaBChE and 30,000 min-1 for HuBChE. The reversible inhibitor ethopropazine had similar Ki values of 0.05 µM for all MaBChE forms and HuBChE. The bimolecular rate constant, ki, for inhibition by diisopropylfluorophosphate (DFP), an analog of sarin, was 2.2 to 2.5 × 107 M-1 min-1 for all MaBChE forms and for HuBChE. A major difference between MaBChE and HuBChE was the rate of reactivation by 2-PAM. The second order rate constant for reactivation of DFP-inhibited MaBChE by 2-PAM was 1.4 M-1 min-1, but was 380 fold faster for DFP-inhibited HuBChE (kr 531 M-1 min-1). The acyl pocket of MaBChE has Leu285 in place of Pro285 in HuBChE. The reactivation rate of DFP-inhibited HuBChE mutant P285L by 2-PAM was reduced 5.8-fold (kr 92 M-1 min-1) indicating that P285 determines whether 2-PAM binds in an orientation that favors release of diisopropylphosphate. DFP-inhibited MaBChE treated with 0.2 M 2-PAM recovered 10% of its original activity, whereas DFP-inhibited HuBChE recovered 80% activity. It was concluded that the biochemical properties of MaBChE are similar to those of HuBChE except for the reactivation of DFP-inhibited BChE.


Subject(s)
Butyrylcholinesterase/chemistry , Cholinesterase Reactivators/chemistry , Pralidoxime Compounds/chemistry , Proline/chemistry , Amino Acid Sequence , Animals , Cholinesterase Inhibitors/pharmacology , Humans , Kinetics , Macaca , Macaca mulatta , Phenothiazines/pharmacology , Sequence Alignment
2.
Chem Biol Interact ; 203(1): 172-6, 2013 Mar 25.
Article in English | MEDLINE | ID: mdl-23220586

ABSTRACT

Exogenously administered human serum butyrylcholinesterase (Hu BChE) was demonstrated to function as a bioscavenger of highly toxic organophosphorus (OP) compounds in several animal species. Since the enzyme is isolated from human serum, it is currently the most suitable pretreatment for human use. A dose of 200-300 mg/70 kg human adult is projected to provide protection from 2 X LD(50) of soman. Due to the limited supply of Hu BChE, strategies aimed at reducing the dose of enzyme are being explored. In this study, we investigated the effect of modification with polyethylene glycol (PEG) on the in vivo stability of Hu BChE. Mice were given two injections of either Hu BChE or Hu BChE modified with PEG-5K or PEG-20K, six weeks apart. Pharmacokinetic parameters, such as mean residence time (MRT), maximal concentration (C(max)), elimination half-life (T(1/2)), and area under the plasma concentration time curve extrapolated to infinity (AUC), were determined. For the first injection, values for MRT, T(1/2), Cmax, and AUC for PEG-5K-Hu BChE and PEG-20K-Hu BChE were similar to those for Hu BChE. These values for the second injection of Hu BChE as well as PEG-Hu BChEs were lower as compared to those for the first injections, likely due to antibody-mediated clearance.


Subject(s)
Butyrylcholinesterase/blood , Adult , Animals , Antidotes/administration & dosage , Antidotes/chemistry , Antidotes/pharmacokinetics , Butyrylcholinesterase/administration & dosage , Butyrylcholinesterase/chemistry , Chemical Warfare Agents/toxicity , Cholinesterase Inhibitors/toxicity , Enzyme Stability , Humans , Male , Mice , Mice, Inbred BALB C , Polyethylene Glycols/chemistry , Soman/toxicity
3.
Biochem Pharmacol ; 80(9): 1427-36, 2010 Nov 01.
Article in English | MEDLINE | ID: mdl-20655881

ABSTRACT

The toxicity of organophosphorus (OP) nerve agents is manifested through irreversible inhibition of acetylcholinesterase (AChE) at the cholinergic synapses, which stops nerve signal transmission, resulting in a cholinergic crisis and eventually death of the poisoned person. Oxime compounds used in nerve agent antidote regimen reactivate nerve agent-inhibited AChE and halt the development of this cholinergic crisis. Due to diversity in structures of OP nerve agents, none of the currently available oximes is able to reactivate AChE inhibited by different nerve agents. To understand the mechanism for the differential activities of oximes toward AChE inhibited by diverse nerve agents in order to aid the design of new broad-spectrum AChE reactivators, we undertook site-directed mutagenesis and molecular modeling studies. Recombinant wild-type and mutant bovine (Bo) AChEs were inhibited by two bulky side-chain nerve agents, GF and VR, and used for conducting reactivation kinetics with five oximes. A homology model for wild-type Bo AChE was built using the recently published crystal structure of human AChE and used to generate models of 2-PAM and HI-6 bound to the active-sites of GF- and VR-inhibited Bo AChEs before nucleophilic attack. Results revealed that the peripheral anionic site (PAS) of AChE as a whole plays a critical role in the reactivation of nerve agent-inhibited AChE by all 4 bis-pyridinium oximes examined, but not by the mono-pyridinium oxime 2-PAM. Of all the residues at the PAS, Y124 appears to be critical for the enhanced reactivation potency of H oximes.


Subject(s)
Acetylcholinesterase/metabolism , Chemical Warfare Agents/toxicity , Cholinesterase Inhibitors/toxicity , Oximes/pharmacology , Animals , Cattle , Cell Line , Enzyme Activation/drug effects , Humans , Structure-Activity Relationship
4.
Toxicology ; 231(1): 11-20, 2007 Feb 28.
Article in English | MEDLINE | ID: mdl-17126468

ABSTRACT

We investigated the potential of low-level exposures to the chemical warfare nerve agent, sarin, to produce adverse effects. Rhesus (Macaca mulatta) and African green monkeys (Chlorocebus acthiops) were trained on a serial probe recognition (SPR) task before IM administration of a low-level concentration (5.87 microg/kg or 2.93 microg/kg) of sarin. Blood was sampled before agent administration and at various times following administration. Sarin administration did not disrupt performance on the SPR task in either species. Major dependent measures characterizing performance (accuracy, number of completed trials per session, average choice response time) were largely unaffected on the day sarin was administered as well as on subsequent testing sessions occurring over several weeks following administration. Analyses of red blood cell (RBC) and plasma samples revealed that sarin administration produced a substantial degree of inhibition of circulating acetylcholinesterase (AChE) in RBC fractions and butyrylcholinesterase (BChE) in plasma fractions, which only slowly recovered. In this regard, AChE activity was inhibited to a greater extent than BChE activity. Blood samples were also evaluated for regenerated sarin, which was found in RBC and plasma fractions in both species and showed orderly elimination functions. More sarin was regenerated from RBC fractions than from plasma fractions. Elimination of regenerated sarin was much slower in RBC than plasma and exceeded the expected time of AChE aging, suggesting the presence of additional sarin binding sites. In general, effects were similar in both species. Taken together, our results show that while the concentrations of sarin administered were clearly biochemically active, they were below those that are required to produce a disruption of behavioral performance.


Subject(s)
Chemical Warfare Agents/toxicity , Cholinesterase Inhibitors/toxicity , Sarin/toxicity , Animals , Behavior, Animal/drug effects , Butyrylcholinesterase/blood , Chemical Warfare Agents/pharmacokinetics , Chlorocebus aethiops , Cholinesterase Inhibitors/blood , Cholinesterase Inhibitors/pharmacokinetics , Cholinesterases/blood , Cognition/drug effects , Female , Macaca mulatta , Male , Sarin/blood , Sarin/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...