Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Equine Vet J ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38924597

ABSTRACT

BACKGROUND: Bisphosphonates are widely used in equine athletes to reduce lameness associated with skeletal disorders. Widespread off-label use has led to concern regarding potential negative effects on bone healing, but little evidence exists to support or refute this. OBJECTIVES: To investigate the influence of clinically relevant doses of tiludronate on bone remodelling and bone healing. STUDY DESIGN: Randomised, controlled in vivo experiments. METHODS: Each horse had a single tuber coxae biopsied (Day 0), then were divided into a treatment (IV tiludronate) or control (IV saline) group. Treatments were administered 30 and 90 days following initial biopsy. Biopsy of the tuber coxae was repeated on Day 60 to evaluate bone healing following a single treatment. Oxytetracycline was administered on Days 137 and 147 to label bone formation. The contralateral tuber coxae was biopsied on Day 150 to evaluate effects of repeated treatment. Bone biopsies were evaluated with micro-computed tomography and/or dynamic histomorphometry using standard techniques. RESULTS: Nineteen horses completed the study, with no complications following the biopsies and treatments. No significant differences in the trabecular bone parameters or bone formation rate were observed between treatment groups. MAIN LIMITATIONS: The use of a first-generation bisphosphonate may mean some effects of these drugs are underrepresented using this model. The results pertain to the tuber coxae and may not reflect injury or the healing response that occurs in long bones in training or racing. CONCLUSIONS: In this model, tiludronate did not affect normal bone remodelling in the horse, despite repeat dosages.

2.
Bone Rep ; 17: 101612, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36035656

ABSTRACT

Cortical porosity develops in chronic kidney disease (CKD) and increases with progressing disease. Cortical porosity is likely a prominent contributor to skeletal fragility/fracture. The degree to which cortical porosity occurs throughout the skeleton is not fully known. In this study, we assessed cortical bone porosity via micro-computed tomography at multiple skeletal sites in rats with progressive chronic kidney disease. We hypothesized that cortical porosity would occur in long bones throughout the body, but to a lesser degree in flat bones and irregular bones. Porosity was measured, using micro-CT, at 17 different skeletal sites in 6 male rats with CKD. Varying degrees of porosity were seen throughout the skeleton with higher porosity in flat and irregular bone (i.e. parietal bone, mandible) vs. long bones (p = 0.01) and in non-weightbearing bones vs. weightbearing bones (p = 0.01). Porosity was also higher in proximal sites vs. distal sites in long bones (p < 0.01 in all comparisons). There was large heterogeneity in porosity within skeletal sites across rats and within the same rat across skeletal sites. Correlations showed cortical porosity of the proximal tibia was positively associated with porosity at the other sites with the strongest correlation to the parietal bone and the weakest to the ulna. Overall, our data demonstrates varying and significant cortical bone porosity across the skeleton of animals with chronic kidney disease. These data point to careful selection of skeletal sites to assess porosity in pre-clinical studies and the potential for fractures at multiple skeletal sites in patients with CKD.

3.
Bone Rep ; 16: 101174, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35252482

ABSTRACT

PURPOSE: Patients with chronic kidney disease (CKD) have high risk of fracture in part due to cortical bone deterioration. The goal of this study was to assess the impact of two different bisphosphonates and dosing regimens on cortical microstructure (porosity, thickness, area) and bone mechanical properties in animal models of CKD. METHODS: In experiment 1, Male Cy/+ (CKD) rats were treated with either a single dose or ten fractionated doses of zoledronate at 18 weeks of age. Fractionated animals received 1/10th of single dose given weekly for 10 weeks, with study endpoint at 28 weeks of age. In experiment 2, male C57Bl/6 J mice were given dietary adenine (0.2%) to induce CKD. Bisphosphonate treated groups were given either a single dose of zoledronate or weekly risedronate injections for 4 weeks. Cortical microstructure was assessed via µCT and mechanical parameters evaluated by monotonic bending tests. RESULTS: Exp 1: CKD rats had higher blood urea nitrogen (BUN) and parathyroid hormone (PTH) compared to NL littermate controls. Single dose zoledronate had significantly higher cortical porosity in CKD S.Zol (2.29%) compared to NL control (0.04%) and untreated CKD (0.14%) (p = 0.004). Exp 2: All adenine groups had significantly higher BUN and PTH compared to control mice. Mice treated with single dose zoledronate (Ad + Zol) had the highest porosity (~6%), which was significantly higher compared to either Ad or Ad + Ris (~3%; p < 0.0001) and control mice had the lowest cortical porosity (0.35%). In both experiments, mechanics were minimally affected by any bisphosphonate dosing regimen. CONCLUSION: A single dose of zoledronate leads to higher cortical porosity compared to more frequent dosing of bisphosphonates (fractionated zoledronate or risedronate). Bisphosphonate treatment demonstrated limited effectiveness in preventing cortical bone microstructure deterioration with mechanical parameters remaining compromised due to CKD and/or secondary hyperparathyroidism irrespective of bisphosphonate treatment.

4.
Bone ; 154: 116228, 2022 01.
Article in English | MEDLINE | ID: mdl-34624561

ABSTRACT

PURPOSE: Chronic kidney disease (CKD) and aging are each independently associated with higher fracture risk. Although CKD is highly prevalent in the aging population, the interaction between these two conditions with respect to bone structure and mechanics is not well understood. The purpose of this study was to examine cortical porosity and mechanical properties in skeletally mature young and aging mice with CKD. METHODS: CKD was induced by feeding 16-week and 78-week male mice 0.2% adenine (AD) for six weeks followed by two weeks of maintenance on a control diet for a total study duration of eight weeks of CKD; control (CON) animals of each age were fed a standard diet. Serum biochemistries, µCT imaging, and mechanical properties via four-point bending were assessed at the endpoint. RESULTS: Phosphorus, parathyroid hormone, and blood urea nitrogen were elevated in both ages of AD mice compared to age-matched CON; aging AD mice had PTH and BUN values higher than all other groups. Femoral cortical porosity was more than four-fold higher in aging AD mice compared to young AD mice and more than two-fold higher compared to age-matched controls. Structural and estimated material mechanical properties were both lower in aging mice, but there were no significant interactions between AD treatment and age. CONCLUSION: These data show an interaction between CKD and aging that produces a more severe biochemical and cortical bone phenotype. This highlights the importance of studying mechanisms and potential interventions in both young and aged animals to translate to a broader spectrum of CKD patients.


Subject(s)
Renal Insufficiency, Chronic , Aged , Aging , Animals , Humans , Male , Mice , Parathyroid Hormone , Phenotype , Porosity , Renal Insufficiency, Chronic/complications
5.
Bone ; 146: 115885, 2021 05.
Article in English | MEDLINE | ID: mdl-33618073

ABSTRACT

BACKGROUND: During aging, there is a normal and mild loss in kidney function that leads to abnormalities of the kidney-bone metabolic axis. In the setting of increased phosphorus intake, hyperphosphatemia can occur despite increased concentrations of the phosphaturic hormone FGF23. This is likely from decreased expression of the FGF23 co-receptor Klotho (KL) with age; however, the roles of age and sex in the homeostatic responses to mild phosphate challenges remain unclear. METHODS: Male and female 16-week and 78-week mice were placed on either normal grain-based chow or casein (higher bioavailable phosphate) diets for 8 weeks. Gene expression, serum biochemistries, micro-computed tomography, and skeletal mechanics were used to assess the impact of mild phosphate challenge on multiple organ systems. Cell culture of differentiated osteoblast/osteocytes was used to test mechanisms driving key outcomes. RESULTS: Aging female mice responded to phosphate challenge by significantly elevating serum intact FGF23 (iFGF23) versus control diet; males did not show this response. Male mice, regardless of age, exhibited higher kidney KL mRNA with similar phosphate levels across both sexes. However, males and females had similar blood phosphate, calcium, and creatinine levels irrespective of age, suggesting that female mice upregulated FGF23 to maintain blood phosphorus, and compromised renal function could not explain the increased serum iFGF23. The 17ß-estradiol levels were not different between groups, and in vivo bone steroid receptor (estrogen receptor 1 [Esr1], estrogen receptor 2 [Esr2], androgen receptor [Ar]) expression was not different by age, sex, or diet. Trabecular bone volume was higher in males but decreased with both age and phosphate challenge in both sexes. Cortical porosity increased with age in males but not females. In vitro studies demonstrated that 17ß-estradiol treatment upregulated FGF23 and Esr2 mRNAs in a dose-dependent manner. CONCLUSIONS: Our study demonstrates that aging female mice upregulate FGF23 to a greater degree during a mild phosphate challenge to maintain blood phosphorus versus young female and young/old male mice, potentially due to direct estradiol effects on osteocytes. Thus, the control of phosphate intake during aging could have modifiable outcomes for FGF23-related phenotypes.


Subject(s)
Hyperphosphatemia , Phosphates , Animals , Female , Fibroblast Growth Factor-23 , Fibroblast Growth Factors , Glucuronidase , Male , Mice , Mice, Knockout , Osteocytes , X-Ray Microtomography
6.
Bone ; 143: 115632, 2021 02.
Article in English | MEDLINE | ID: mdl-32927105

ABSTRACT

PURPOSE: Chronic kidney disease (CKD) patients have a high incidence of fracture due in part to cortical porosity. The goal of this study was to study cortical pore infilling utilizing two rodent models of progressive CKD. METHODS: Exp 1: Female C57Bl/6J mice (16-week-old) were given dietary adenine (0.2%) to induce CKD for 10 weeks after which calcium water supplementation (Ca-H2O; 1.5% and 3%) was given to suppress PTH for another 4 weeks. Exp 2: Male Cy/+ rats were aged to ~30 weeks with baseline porosity assessed using in vivo µCT. A second in vivo scan followed 5-weeks of Ca-H2O (3%) supplementation. RESULTS: Exp 1: Untreated adenine mice had elevated blood urea nitrogen (BUN), parathyroid hormone (PTH), and cortical porosity (~2.6% porosity) while Ca-H2O lowered PTH and cortical porosity (0.5-0.8% porosity). Exp 2: Male Cy/+ rats at baseline had variable porosity (0.5%-10%), but after PTH suppression via Ca-H2O, cortical porosity in all rats was lower than 0.5%. Individual pore dynamics measured via a custom MATLAB code demonstrated that 85% of pores infilled while 12% contracted in size. CONCLUSION: Ca-H2O supplementation causes net cortical pore infilling over time and imparted mechanical benefits. While calcium supplementation is not a viable clinical treatment for CKD, these data demonstrate pore infilling is possible and further research is required to examine clinically relevant therapeutics that may cause net pore infilling in CKD.


Subject(s)
Parathyroid Hormone , Renal Insufficiency, Chronic , Aged , Animals , Female , Humans , Male , Mice , Mice, Inbred C57BL , Porosity , Rats
7.
Physiol Rep ; 8(11): e14434, 2020 06.
Article in English | MEDLINE | ID: mdl-32476270

ABSTRACT

Iron-deficiency anemia is a potent stimulator of the phosphaturic hormone Fibroblast growth factor-23 (FGF23). Anemia, elevated FGF23, and elevated serum phosphate are significant mortality risk factors for patients with chronic kidney disease (CKD). However, the contribution of anemia to overall circulating FGF23 levels in CKD is not understood. Our goal was to investigate the normalization of iron handling in a CKD model using the erythropoiesis stimulating agents (ESAs) Erythropoietin (EPO) and the hypoxia-inducible factor prolyl hydroxylase inhibitor (HIF-PHDi) FG-4592, on the production of, and outcomes associated with, changes in bioactive, intact FGF23 ("iFGF23"). Our hypothesis was that rescuing the prevailing anemia in a model of CKD would reduce circulating FGF23. Wild-type mice were fed an adenine-containing diet to induce CKD, then injected with EPO or FG-4592. The mice with CKD were anemic, and EPO improved red blood cell indices, whereas FG-4592 increased serum EPO and bone marrow erythroferrone (Erfe), and decreased liver ferritin, bone morphogenic protein-6 (Bmp-6), and hepcidin mRNAs. In the mice with CKD, iFGF23 was markedly elevated in control mice but was attenuated by >70% after delivery of either ESA, with no changes in serum phosphate. ESA treatment also reduced renal fibrosis markers, as well as increased Cyp27b1 and reduced Cyp24a1 mRNA expression. Thus, improvement of iron utilization in a CKD model using EPO and a HIF-PHDi significantly reduced iFGF23, demonstrating that anemia is a primary driver of FGF23, and that management of iron utilization in patients with CKD may translate to modifiable outcomes in mineral metabolism.


Subject(s)
Erythropoietin/administration & dosage , Fibroblast Growth Factors/blood , Hypoxia-Inducible Factor-Proline Dioxygenases/antagonists & inhibitors , Prolyl-Hydroxylase Inhibitors/administration & dosage , Renal Insufficiency, Chronic/blood , Anemia/blood , Animals , Bone Morphogenetic Protein 6/blood , Cytokines/blood , Disease Models, Animal , Erythropoietin/blood , Female , Fibroblast Growth Factor-23 , Hepcidins/blood , Mice, Inbred C57BL , Muscle Proteins/blood
8.
Front Immunol ; 11: 590494, 2020.
Article in English | MEDLINE | ID: mdl-33552049

ABSTRACT

Patients with acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) treated with immune checkpoint inhibitors (ICIs) are at risk of pneumonitis as well as pneumonia (combined henceforth as ICI-related pulmonary complications). Little is known about the cellular and molecular mechanisms underlying ICI-related pulmonary complications. We characterized lymphocytes from bronchoalveolar lavage (BAL) fluid and peripheral blood from seven AML/MDS patients with pulmonary symptoms after ICI-based therapy (ICI group) and four ICI-naïve AML/MDS patients with extracellular bacterial or fungal pneumonias (controls). BAL T cells in the ICI group were clonally expanded, and BAL IFNγ+ IL-17- CD8+ T and CXCR3+ CCR6+ Th17/Th1 cells were enriched in the ICI group. Our data suggest that these cells may play a critical role in the pathophysiology of ICI-related pulmonary complications. Understanding of these cell populations may also provide predictive and diagnostic biomarkers of ICI-related pulmonary complications, eventually enabling differentiation of pneumonitis from pneumonia in AML/MDS patients receiving ICI-based therapies.


Subject(s)
Bronchoalveolar Lavage Fluid/cytology , Leukemia, Myeloid, Acute/immunology , Myelodysplastic Syndromes/immunology , Pneumonia/immunology , T-Lymphocytes/immunology , Adult , Aged , Aged, 80 and over , Antineoplastic Agents, Immunological/adverse effects , Bronchoalveolar Lavage Fluid/immunology , Female , Humans , Immune Checkpoint Inhibitors/adverse effects , Immunophenotyping , Leukemia, Myeloid, Acute/drug therapy , Male , Middle Aged , Myelodysplastic Syndromes/drug therapy , Pneumonia/chemically induced
SELECTION OF CITATIONS
SEARCH DETAIL
...