Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38313256

ABSTRACT

Glioblastoma (GBM) is a malignant brain tumor with uncontrolled invasive growth. Here, we demonstrate how GBM cells usurp guidance receptor Plexin-B2 to gain biomechanical plasticity for polarized migration through confined space. Using live-cell imaging to track GBM cells negotiating microchannels, we reveal active endocytosis at cell front and filamentous actin assembly at rear to propel GBM cells through constrictions. These two processes are interconnected and governed by Plexin-B2 that orchestrates cortical actin and membrane tension, shown by biomechanical assays. Molecular dynamics simulations predict that balanced membrane and actin tension are required for optimal migratory velocity and consistency. Furthermore, Plexin-B2 mechanosensitive function requires a bendable extracellular ring structure and affects membrane internalization, permeability, phospholipid composition, as well as inner membrane surface charge. Together, our studies unveil a key element of membrane tension and mechanoelectrical coupling via Plexin-B2 that enables GBM cells to adapt to physical constraints and achieve polarized confined migration.

2.
Methods Mol Biol ; 2593: 233-244, 2023.
Article in English | MEDLINE | ID: mdl-36513935

ABSTRACT

Technologies for staining and imaging multiple antigens in single tissue sections are developing rapidly due to their potential to uncover spatial relationships between proteins with cellular resolution. Detections are performed simultaneously or sequentially depending on the approach. However, several technologies can detect limited numbers of antigens or require expensive equipment and reagents. Another serious concern is the lack of flexibility. Most commercialized reagents are validated for defined antibody panels, and introducing any changes is laborious and costly. In this chapter, we describe a method where we combine, for the first time, multiplexed IF followed by sequential immunohistochemistry (IHC) with AEC chromogen on Leica Bond staining processors with paraffin tissue sections. We present data for successful detection of 10 antigens in a single tissue section with preserved tissue integrity. Our method is designed for use with any combination of antibodies of interest, with images collected using whole slide scanners. We include an image viewing and image analysis workflow using nonlinear warping to combine all staining passes in a single full-resolution image of the entire tissue section, aligned at the single cell level.


Subject(s)
Biomarkers, Tumor , Proteins , Immunohistochemistry , Biomarkers, Tumor/metabolism , Fluorescent Antibody Technique , Staining and Labeling , Antigens/analysis
3.
Curr Biol ; 30(7): R324-R326, 2020 04 06.
Article in English | MEDLINE | ID: mdl-32259509

ABSTRACT

To thrive in dense communities, organisms have to navigate neighbors and resources. A new study reveals that bacteria integrate cues of communal living through stress pathways. The primary source of the stress - at least for one bacterium - is a direct conflict with neighbors.


Subject(s)
Bacteria , Biofilms , Bacteria/genetics
4.
Bio Protoc ; 10(5): e3543, 2020 Mar 05.
Article in English | MEDLINE | ID: mdl-33659517

ABSTRACT

Many bacteria take part in self recognition and kin discrimination behavior using contact-dependent effectors. Understanding the effects these effectors cause is important to explain bacterial community formation and population dynamics. Typically, kin discrimination effectors are toxins that kill target cells; their effect is therefore obvious and easily measurable. However, many self-recognition effectors, such as the Proteus mirabilis Ids system, are non-lethal and do not cause obvious physiological changes in target cells. Previously, experimental techniques to probe cells experiencing non-lethal kin recognition have been limited. Here we describe a technique to reliably isolate cells deemed self and non-self through Ids self-recognition for downstream phenotypic analysis. Liquid cultures of fluorescently labeled self-recognition mutants are mixed together and inoculated on swarm-permissive agar. Mixed swarms are harvested, and each strain is isolated through fluorescence-activated cell sorting (FACS). The growth rate of each strain is measured on a plate reader. This protocol is adaptable for other bacterial species. We describe briefly how sorted particles can be used for other analyses such as RNA-Seq library preparation.

5.
PLoS Pathog ; 15(7): e1007885, 2019 07.
Article in English | MEDLINE | ID: mdl-31323074

ABSTRACT

Colonies of the opportunistic pathogen Proteus mirabilis can distinguish self from non-self: in swarming colonies of two different strains, one strain excludes the other from the expanding colony edge. Predominant models characterize bacterial kin discrimination as immediate antagonism towards non-kin cells, typically through delivery of toxin effector molecules from one cell into its neighbor. Upon effector delivery, receiving cells must either neutralize it by presenting a cognate anti-toxin as would a clonal sibling, or suffer cell death or irreversible growth inhibition as would a non-kin cell. Here we expand this paradigm to explain the non-lethal Ids self-recognition system, which stops access to a social behavior in P. mirabilis by selectively and transiently inducing non-self cells into a growth-arrested lifestyle incompatible with cooperative swarming. This state is characterized by reduced expression of genes associated with protein synthesis, virulence, and motility, and also causes non-self cells to tolerate previously lethal concentrations of antibiotics. We show that temporary activation of the stringent response is necessary for entry into this state, ultimately resulting in the iterative exclusion of non-self cells as a swarm colony migrates outwards. These data clarify the intricate connection between non-lethal recognition and the lifecycle of P. mirabilis swarm colonies.


Subject(s)
Microbial Interactions/physiology , Proteus mirabilis/physiology , Proteus mirabilis/pathogenicity , Animals , Drug Resistance, Bacterial/genetics , Drug Resistance, Bacterial/physiology , Genes, Bacterial , Humans , Microbial Interactions/genetics , Models, Biological , Proteus Infections/microbiology , Proteus mirabilis/genetics , Transcription, Genetic , Type VI Secretion Systems/genetics , Type VI Secretion Systems/physiology , Urinary Tract Infections/microbiology , Virulence/genetics , Virulence/physiology
6.
J Bacteriol ; 200(18)2018 09 15.
Article in English | MEDLINE | ID: mdl-29967121

ABSTRACT

Individual cells of the bacterium Proteus mirabilis can elongate up to 40-fold on surfaces before engaging in a cooperative surface-based motility termed swarming. How cells regulate this dramatic morphological remodeling remains an open question. In this paper, we move forward the understanding of this regulation by demonstrating that P. mirabilis requires the gene rffG for swarmer cell elongation and subsequent swarm motility. The rffG gene encodes a protein homologous to the dTDP-glucose 4,6-dehydratase protein of Escherichia coli, which contributes to enterobacterial common antigen biosynthesis. Here, we characterize the rffG gene in P. mirabilis, demonstrating that it is required for the production of large lipopolysaccharide-linked moieties necessary for wild-type cell envelope integrity. We show that the absence of the rffG gene induces several stress response pathways, including those controlled by the transcriptional regulators RpoS, CaiF, and RcsB. We further show that in rffG-deficient cells, the suppression of the Rcs phosphorelay, via loss of RcsB, is sufficient to induce cell elongation and swarm motility. However, the loss of RcsB does not rescue cell envelope integrity defects and instead results in abnormally shaped cells, including cells producing more than two poles. We conclude that an RcsB-mediated response acts to suppress the emergence of shape defects in cell envelope-compromised cells, suggesting an additional role for RcsB in maintaining cell morphology under stress conditions. We further propose that the composition of the cell envelope acts as a checkpoint before cells initiate swarmer cell elongation and motility.IMPORTANCEProteus mirabilis swarm motility has been implicated in pathogenesis. We have found that cells deploy multiple uncharacterized strategies to handle cell envelope stress beyond the Rcs phosphorelay when attempting to engage in swarm motility. While RcsB is known to directly inhibit the master transcriptional regulator for swarming, we have shown an additional role for RcsB in protecting cell morphology. These data support a growing appreciation that the Rcs phosphorelay is a multifunctional regulator of cell morphology in addition to its role in microbial stress responses. These data also strengthen the paradigm that outer membrane composition is a crucial checkpoint for modulating entry into swarm motility. Furthermore, the rffG-dependent moieties provide a novel attractive target for potential antimicrobials.


Subject(s)
Antigens, Bacterial/genetics , Bacterial Proteins/genetics , Proteus mirabilis/genetics , Proteus mirabilis/physiology , Bacterial Proteins/physiology , Escherichia coli/genetics , Escherichia coli/physiology , Escherichia coli Proteins/genetics , Gene Expression Regulation, Bacterial , Hydro-Lyases/genetics , Mutation
7.
mBio ; 4(4)2013 Aug 20.
Article in English | MEDLINE | ID: mdl-23963182

ABSTRACT

UNLABELLED: It is becoming clear that the bacterial flagellar motor output is important not only for bacterial locomotion but also for mediating the transition from liquid to surface living. The output of the flagellar motor changes with the mechanical load placed on it by the external environment: at a higher load, the motor runs more slowly and produces higher torque. Here we show that the number of torque-generating units bound to the flagellar motor also depends on the external mechanical load, with fewer stators at lower loads. Stalled motors contained at least as many stators as rotating motors at high load, indicating that rotation is unnecessary for stator binding. Mutant stators incapable of generating torque could not be detected around the motor. We speculate that a component of the bacterial flagellar motor senses external load and mediates the strength of stator binding to the rest of the motor. IMPORTANCE: The transition between liquid living and surface living is important in the life cycles of many bacteria. In this paper, we describe how the flagellar motor, used by bacteria for locomotion through liquid media and across solid surfaces, is capable of adjusting the number of bound stator units to better suit the external load conditions. By stalling motors using external magnetic fields, we also show that rotation is not required for maintenance of stators around the motor; instead, torque production is the essential factor for motor stability. These new results, in addition to previous data, lead us to hypothesize that the motor stators function as mechanosensors as well as functioning as torque-generating units.


Subject(s)
Bacterial Physiological Phenomena , Flagella/metabolism , Macromolecular Substances/metabolism , Molecular Motor Proteins/metabolism , Protein Multimerization , Stress, Physiological
8.
Mol Microbiol ; 87(2): 338-47, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23216828

ABSTRACT

The bacterial flagellar motor, one of the few rotary motors in nature, produces torque to drive the flagellar filament by ion translocation through membrane-bound stator complexes. We used the light-driven proton pump proteorhodopsin (pR) to control the proton-motive force (PMF) in vivo by illumination. pR excitation was shown to be sufficient to replace native PMF generation, and when excited in cells with intact native PMF generation systems increased motor speed beyond the physiological norm. We characterized the effects of rapid in vivo PMF changes on the flagellar motor. Transient PMF disruption events from loss of illumination caused motors to stop, with rapid recovery of their previous rotation rate after return of illumination. However, extended periods of PMF loss led to stepwise increases in rotation rate upon PMF return as stators returned to the motor. The rate constant for stator binding to a putative single binding site on the motor was calculated to be 0.06 s(-1). Using GFP-tagged MotB stator proteins, we found that transient PMF disruption leads to reversible stator diffusion away from the flagellar motor, showing that PMF presence is necessary for continued motor integrity, and calculated a stator dissociation rate of 0.038 s(-1).


Subject(s)
Bacterial Physiological Phenomena , Flagella/chemistry , Flagella/physiology , Membrane Transport Proteins/metabolism , Molecular Motor Proteins/metabolism , Proton-Motive Force , Light
SELECTION OF CITATIONS
SEARCH DETAIL
...