Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 75(10): 2342-8, 2003 May 15.
Article in English | MEDLINE | ID: mdl-12918975

ABSTRACT

The use of microfabricated cantilevers as bioaffinity sensors was investigated. Since many bioaffinity interactions involve proteins as receptors, we conducted studies of the magnitude, kinetics, and reversibility of surface stresses caused when common proteins interact with microcantilevers (MCs) with nanostructured (roughened) gold surfaces on one side. Exposure of nanostructured, unfunctionalized MCs to the proteins immunoglobulin G and bovine serum albumin (BSA) resulted in reversible large tensile stresses, whereas MCs with smooth gold surfaces on one side produced reversible responses that were considerably smaller and compressive. The response magnitude for nanostructured MCs exposed to BSA is shown to be concentration dependent, and linear calibration over the range of 1-200 mg/L is demonstrated. Stable, reusable protein bioaffinity phases based on unique enantioselective antibodies are created by covalently linking monoclonal antibodies to nanostructured MC surfaces. The direct (label-free) stereoselective detection of trace amounts of an important class of chiral analytes, the alpha-amino acids, was achieved based on immunomechanical responses involving nanoscale bending of the cantilever. The temporal response of the cantilever (delta deflection/delta time) is linearly proportional to the analyte concentration and allows the quantitative determination of enantiomeric purity up to an enantiomeric excess of 99.8%. To our knowledge, this is the first demonstration of chiral discrimination using highly scalable microelectromechanical systems.


Subject(s)
Antibodies, Monoclonal/chemistry , Biosensing Techniques/methods , Nanotechnology/methods , Amino Acids/analysis , Amino Acids/chemistry , Animals , Biosensing Techniques/instrumentation , Cattle , Humans , Immunoglobulin G/chemistry , Nanotechnology/instrumentation , Serum Albumin, Bovine/chemistry , Stereoisomerism , Stress, Mechanical
2.
Talanta ; 53(3): 599-608, 2000 Dec 04.
Article in English | MEDLINE | ID: mdl-18968147

ABSTRACT

A chemical sensor based on the deflection of a surface modified silicon micro-cantilever is presented. A thin film of sol-gel was applied to one side of the micro-cantilever surface using a spin coating procedure. The sensor has been shown to give different responses to vapor phase analytes of varying chemical composition, as well as to varying concentrations of a given analyte. Ethanol, a highly polar molecule, exhibits a strong affinity for the polar sol-gel coating resulting in a large response; pentane, a non-polar hydrocarbon, shows very little response. The sol-gel coating has also been shown to function as a backbone for the immobilization of chemically selective phases on the cantilever surface. Reaction of the sol-gel film with chlorotriethoxysilane and subsequent capping of the remaining reactive surface silanols with hexamethyldisilizane increases the non-polar nature of the film. This results in an increase in the response of the sensor to non-polar analytes. The effects of film thickness and cantilever structure thickness on response were also investigated.

SELECTION OF CITATIONS
SEARCH DETAIL
...