Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 289: 117849, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34325096

ABSTRACT

Mangrove sediment is a major sink for phenanthrene in natural environments. Consequently, this study investigated the effects of seasonal variation on the biodegradation rates of low (150 mg kg-1), moderate (600 mg kg-1), and high (1200 mg kg-1) phenanthrene-contaminated mangrove sediments using a microcosm study and identified potential key phenanthrene-degrading bacteria using high throughput sequencing of 16 S rRNA gene and quantitative-PCR of the PAH-ring hydroxylating dioxygenase (PAH-RHDα) genes. The biodegradation rates of phenanthrene in all treatments were higher in the wet-season sediments (11.58, 14.51, and 8.94 mg kg-1 sediment day-1) than in the dry-season sediments (3.51, 12.56, and 5.91 mg kg-1 sediment day-1) possibly due to higher nutrient accumulation caused by rainfall and higher diversity of potential phenanthrene-degrading bacteria. The results suggested that the mangrove sediment microbiome significantly clustered according to season. Although Gram-negative phenanthrene-degrading bacteria (i.e., Anaerolineaceae, Marinobacter, and Rhodobacteraceae) played a key role in both dry and wet seasons, distinctly different phenanthrene-degrading bacterial taxa were observed in each season. Halomonas and Porticoccus were potentially responsible for the degradation of phenanthrene in the dry and wet seasons, respectively. The knowledge gained from this study contributes to the development of effective and rationally designed microbiome innovations for oil removal.


Subject(s)
Microbiota , Phenanthrenes , Polycyclic Aromatic Hydrocarbons , Biodegradation, Environmental , Geologic Sediments , Polycyclic Aromatic Hydrocarbons/analysis , Seasons
2.
Mar Pollut Bull ; 133: 595-605, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30041354

ABSTRACT

Hydrocarbon contamination is a serious problem that degrades the quality of mangrove ecosystems, and bioremediation using autochthonous bacteria is a promising technology to recover an impacted environment. This research investigates the biodegradation rates of diesel, hexadecane and phenanthrene, by conducting a microcosm study and survey of the autochthonous microbial community in contaminated mangrove sediment, using an Illumina MiSeq platform. The biodegradation rates of diesel, hexadecane and phenanthrene were 82, 86 and 8 mg kg-1 sediment day-1, respectively. The removal efficiencies of hexadecane and phenanthrene were >99%, whereas the removal efficiency of diesel was 88%. A 16S rRNA gene amplicon sequence analysis revealed that the major bacterial assemblages detected were Gammaproteobacteria, Deltaproteobacteria, Alphaproteobacteria. The bacterial compositions were relatively constant, while reductions of the supplemented hydrocarbons were observed. The results imply that the autochthonous microorganisms in the mangrove sediment were responsible for the degradation of the respective hydrocarbons. Diesel-, hexadecane- and phenanthrene-degrading bacteria, namely Bacillus sp., Pseudomonas sp., Acinetobacter sp. and Staphylococcus sp., were also isolated from the mangrove sediment. The mangrove sediment provides a potential resource of effective hydrocarbon-degrading bacteria that can be used as an inoculum or further developed as a ready-to-use microbial consortium for the purpose of bioremediation.


Subject(s)
Alkanes/metabolism , Geologic Sediments/microbiology , Microbial Consortia/physiology , Phenanthrenes/metabolism , Bacteria/genetics , Bacteria/metabolism , Biodegradation, Environmental , Environmental Pollutants/metabolism , Gasoline , Metagenomics/methods , Microbial Consortia/genetics , RNA, Ribosomal, 16S/metabolism , Thailand , Wetlands
SELECTION OF CITATIONS
SEARCH DETAIL
...