Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Med Hypotheses ; 115: 46-49, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29685195

ABSTRACT

Inability to have a satisfactory sexual intercourse is a serious problem affecting many people. Despite enormous efforts for developing effective treatments for pathologic conditions associated with sexual malfunction, still a lot of patients do not respond well to such treatments. Microbiota has been shown to affect obesity, diabetes, hypertension, stress/anxiety and sex hormonal disturbances. Nevertheless, no research has concentrated on the link between microbiota and human sexuality or sexual dysfunction. We propose another line of enquiry into sexual dysfunction by hypothesizing a relationship between microbiota and factors affecting human sexuality. Hence, it can be assumed that microbiota manipulation may improve sexual behavior and reduce sexual dysfunction. We also discuss the evidence to back up this hypothesis, and present some predictions.


Subject(s)
Microbiota/physiology , Sexual Dysfunction, Physiological/microbiology , Sexual Dysfunction, Physiological/therapy , Animals , Fecal Microbiota Transplantation , Female , Gastrointestinal Microbiome/physiology , Humans , Male , Models, Biological , Prebiotics , Probiotics/therapeutic use , Sexuality/physiology
2.
Int J Syst Evol Microbiol ; 67(9): 3381-3386, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28857021

ABSTRACT

A crude-oil-degrading, Gram-stain-positive actinobacterial strain, RIPIT, was isolated from a soil sample collected from an oil-contaminated mud pit in Khangiran oil and gas field, in the north-east of Iran. RIPIT was strictly aerobic, catalase- and oxidase-positive. The strain grew with 0-12.5 % (w/v) NaCl (optimum 3-5 %), at 25-55 °C (optimum 45 °C) and at pH 6.0-9.5 (optimum pH 7.0). The results of 16S rRNA gene sequence comparative analysis indicated that RIPIT represents a member of the genus Prauserella, with high phylogenetic similarity to Prauserella coralliicola SCSIO 11529T (97.5 %), Prauserella endophytica SP28S-3T (97.5 %) and Prauserella marina MS498T (97.2 %). DNA-DNA relatedness values between the novel strain and P. coralliicola DSM 45821T, P. endophytica DSM 46655T and P. marina DSM 45268T were 28 , 19 and 23 %, respectively. The cell wall peptidoglycan of RIPIT contained meso-diaminopimelic acid as the diamino acid and the whole-cell sugars are galactose and arabinose. The polar lipids pattern contained phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylinositol and two unknown phospholipids. Its cellular fatty acids pattern consisted of C17 : 1ω6c, iso-C16 : 0 and summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH), and the major respiratory quinone was MK-9(H4). The G+C content of the genomic DNA was 69 mol%. On the basis of polyphasic taxonomic data we propose that RIPIT represents a novel species of the genus Prauserella, for which the name Prauserella oleivorans sp. nov. is proposed. The type strain of Prauserellaoleivorans is RIPIT (=IBRC-M 10906T=LMG 28389T).


Subject(s)
Actinomycetales/classification , Oil and Gas Fields/microbiology , Petroleum/microbiology , Phylogeny , Soil Microbiology , Actinomycetales/genetics , Actinomycetales/isolation & purification , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Diaminopimelic Acid/chemistry , Fatty Acids/chemistry , Iran , Nucleic Acid Hybridization , Peptidoglycan/chemistry , Petroleum Pollution , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Soil Pollutants , Vitamin K 2/analogs & derivatives , Vitamin K 2/chemistry
3.
Int J Syst Evol Microbiol ; 65(12): 4743-4748, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26420766

ABSTRACT

Strain RIPI 110T was isolated from a soil sample collected from an oil-contaminated site on Siri Island, Persian Gulf, Iran. Cells of the novel isolate were Gram-stain-negative, facultatively anaerobic, non-motile and rod-shaped. Cells divided asymmetrically by budding and formed rosette-like clusters. The optimum pH and temperature for growth were pH 7 and 30 °C, while the strain was able to grow at pH 5.5-8 and 15-35 °C. Strain RIPI 110T utilized only complex carbon sources and pyruvate as the sole carbon source and could not grow under photoautotrophic conditions. The highest 16S rRNA gene sequence similarities, 93.9, 93.9 and 93.5 %, were obtained with Variibacter gotjawalensis GJW-30T, Rhodoplanes roseus 941T and Rhodoplanes elegans AS130T, respectively. The major cellular fatty acids were summed feature 8 (C18 : 1ω7c/ω6c), C16 : 0 and C19 : 0 cyclo ω8c. Polar lipid analyses revealed that strain RIPI 110T contained phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, an unknown aminophospholipid and four unknown phospholipids. Ubiquinone-10 was the predominant quinone component. The DNA G+C content was 59.4 mol%. On the basis of the 16S rRNA gene sequence analysis, in combination with chemotaxonomic and physiological data, the novel isolate could not be classified in any recognized genera. Strain RIPI 110T is thus considered to represent a novel species of a new genus within the order Rhizobiales, for which the name Pseudorhodoplanes sinuspersici gen. nov., sp. nov. is proposed. The type strain of the type species is RIPI 110T ( = IBRC-M 10770T = CECT 8374T).


Subject(s)
Alphaproteobacteria/classification , Petroleum Pollution , Phylogeny , Soil Microbiology , Soil Pollutants , Alphaproteobacteria/genetics , Alphaproteobacteria/isolation & purification , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Iran , Molecular Sequence Data , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Ubiquinone/chemistry
4.
Med Hypotheses ; 80(5): 675-8, 2013 May.
Article in English | MEDLINE | ID: mdl-23410499

ABSTRACT

Butyrate as an important short chain fatty acid has been shown to affect different kinds of cancer cells. Butyrate exerts its anti-cancerous effects by several mechanisms and has lead to successful outcomes in phase I and II clinical trials. Moreover, since solid tumors grow rapidly, multiple regions of hypoxia and anoxia forms within them that provide good niches for the growth of anaerobic bacteria. It has been shown that bacterial tumor targeting is an applicable strategy for tumor-selective therapy. Therefore, we propose that nonpathogenic anaerobic butyrate-producing bacteria may be a versatile tool in tumor therapy as they can grow in anoxic and hypoxic regions of tumors and influence tumor cells by producing butyric acid. Moreover, this approach may overcome the existing problems of butyrate delivery to the sites of tumor and enhance its bioavailability. Also reversion of cancer drug resistance by butyrate will be plausible. Tumor targeting with nonpathogenic anaerobic bacteria with a higher capacity to produce butyrate could be the focus of future research.


Subject(s)
Bacteria, Anaerobic/physiology , Biological Products/therapeutic use , Butyric Acid/metabolism , Butyric Acid/therapeutic use , Neoplasms/microbiology , Neoplasms/therapy , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...