Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Regul Integr Comp Physiol ; 295(5): R1671-9, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18799630

ABSTRACT

Rapid growth is of crucial importance for Adélie penguin chicks reared during the short Antarctic summer. It partly depends on the rapid ontogenesis of fat stores that are virtually null at hatching but then develop considerably (x40) within a month to constitute both an isolative layer against cold and an energy store to fuel thermogenic and growth processes. The present study was aimed at identifying by RT-PCR the major transcriptional events that chronologically underlie the morphological transformation of adipocyte precursors into mature adipocytes from hatching to 30 days of age. The peak expression of GATA binding protein 3, a marker of preadipocytes, at day 7 posthatch indicates a key proliferation step, possibly in relation to the expression of C/EBPalpha (C/EBPalpha). High plasma total 3,5,3'-triiodo-l-thyronine (T(3)) levels and high levels of growth hormone receptor transcripts at hatching suggested that growth hormone and T(3) play early activating roles to favor proliferation of preadipocyte precursors. Differentiation and growth of preadipocytes may occur around day 15 in connection with increased abundance of transcripts encoding IGF-1, proliferator-activated receptor-gamma, and C/EBPbeta, gradually leading to functional maturation of metabolic features of adipocytes including lipid uptake and storage (lipoprotein lipase, fatty-acid synthase) and late endocrine functions (adiponectin) by day 30. Present results show a close correlation between adipose tissue development and chick biology and a difference in the scheduled expression of regulatory factors controlling adipogenesis compared with in vitro studies using cell lines emphasizing the importance of in vivo approaches.


Subject(s)
Adipose Tissue, White/growth & development , Spheniscidae/growth & development , Adipocytes/physiology , Adipose Tissue, White/physiology , Aging/physiology , Animals , Antarctic Regions , Body Temperature Regulation/physiology , Body Weight/physiology , Cell Differentiation/physiology , DNA Primers , GATA Transcription Factors/biosynthesis , GATA Transcription Factors/genetics , Gene Expression Profiling , Organ Size/physiology , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction , Transcription Factors/genetics , Triiodothyronine/blood
2.
Obesity (Silver Spring) ; 16(8): 1763-9, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18551122

ABSTRACT

The objectives of this study were to identify potential alterations in gene expression of melanocortin-4 receptor (MC4-R), proopiomelanocortin (POMC), and Agouti-related protein (AgRP) in mouse hypothalamus under a chronic peripheral infusion of leptin or at early (8 weeks) and advanced (16 weeks) phases of diet-induced obesity. Control or diet-induced obesity mice (8 or 16 weeks of high-fat diet) were either treated or not treated with leptin. Metabolic features were analyzed and expression of the genes of interest was measured by quantitative reverse transcriptase-PCR (RT-qPCR) and western blot. We reported that in control mice, but not in obese mice, leptin infusion induced an increase in POMC mRNA level as well as in MC4-R mRNA level suggesting that leptin could act directly and/or through alpha-melanocyte-stimulating hormone (alpha-MSH). This hypothesis was reinforced after in vitro studies, using the mouse hypothalamic GT1-7 cell line, since both leptin and Norleucine(4), D-Phenylalanine(7)-alpha-MSH (NDP-alpha-MSH) treatments increased MC4-R expression. After 8 weeks of high-fat diet, nondiabetic obese mice became resistant to the central action of leptin and their hypothalamic content of POMC and AgRP mRNA were decreased without modification of MC4-R mRNA level. After 16 weeks of high-fat diet, mice exhibited more severe metabolic disorders with type 2 diabetes. Moreover, hypothalamic expression of MC4-R was highly increased. In conclusion, several alterations of the melanocortin system were found in obese mice that are probably consecutive to their central resistance to leptin. Moreover, when the metabolic status is highly degraded (with all characteristics of a type 2 diabetes), other regulatory mechanisms (independent of leptin) can also take place.


Subject(s)
Hypothalamus/drug effects , Hypothalamus/metabolism , Leptin/physiology , Melanocortins/metabolism , Obesity/metabolism , Agouti-Related Protein/metabolism , Animals , Cell Line , Diabetes Mellitus, Type 2/metabolism , Disease Models, Animal , Hypothalamus/cytology , Infusions, Parenteral , Leptin/administration & dosage , Male , Mice , Mice, Inbred C57BL , Norleucine/pharmacology , Pro-Opiomelanocortin/metabolism , RNA, Messenger/metabolism , Receptor, Melanocortin, Type 4/metabolism , alpha-MSH/analogs & derivatives , alpha-MSH/pharmacology
3.
Endocrinology ; 148(5): 1996-2005, 2007 May.
Article in English | MEDLINE | ID: mdl-17272390

ABSTRACT

The aldo-keto reductase 1B7 (AKR1B7) encodes an aldose-reductase that has been reported as a detoxification enzyme until now. We have demonstrated that AKR1B7 is differently expressed in various mouse white adipose tissues depending on their location. Its expression is associated with a higher ratio of preadipocytes vs. adipocytes. The cells that express AKR1B7 did not contain lipid droplets, and the expression level of akr1b7 was very low in mature adipocytes. We have defined the role of AKR1B7 in adipogenesis using either primary cultures of adipose stromal cells (containing adipocyte precursors) or the 3T3-L1 cell line. Under the same differentiation conditions, adipose stromal cells from tissues that expressed AKR1B7 had a decreased capacity to accumulate lipids compared with those that did not express it. Moreover, the overexpression of sense or antisense AKR1B7 in 3T3-L1 preadipocytes inhibited or accelerated, respectively, their rate of differentiation into adipocytes. In vivo experiments demonstrated that AKR1B7-encoding mRNA expression decreased in adipose tissues from mice where obesity was induced by a high-fat diet. All these results attributed for the first time a novel role to AKR1B7, which is the inhibition of adipogenesis in some adipose tissues.


Subject(s)
Adipogenesis/physiology , Adipose Tissue/enzymology , Aldehyde Reductase/genetics , Aldehyde Reductase/metabolism , Obesity/metabolism , 3T3-L1 Cells , Adipocytes/cytology , Adipocytes/enzymology , Animals , Cell Differentiation/physiology , Cell Fractionation , Cholesterol Side-Chain Cleavage Enzyme/genetics , Dietary Fats/pharmacology , Epididymis/cytology , Epididymis/enzymology , Gene Expression Regulation, Enzymologic , Immunohistochemistry , Male , Mice , Mice, Inbred C57BL , Obesity/physiopathology , Phosphoproteins/genetics , RNA, Antisense , RNA, Messenger/metabolism , Stromal Cells/cytology , Stromal Cells/enzymology
4.
Biochimie ; 88(9): 1115-24, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16837116

ABSTRACT

Android obesity is often associated with a metabolic syndrome characterized, in particular, by a type 2 diabetes and cardiovascular problems. This could be induced by an excess of local production of glucocorticoids (GC) by adipose tissue (or other tissues). This production of GC by its target tissues depends on the 11beta-hydroxysteroid dehydrogenase type 1 (11betaHSD1) enzyme. Our aim was to characterize some mechanisms which control the expression of the human 11betaHSD1 gene (hHSD11B1) in preadipocytes. By using different luciferase constructs containing fragments of the hHSD11B1 promoter, we demonstrate that two members of the CCAAT/enhancer-binding protein family, C/EBPalpha and C/EBPbeta, are required for the basal transcriptional activity of HSD11B1 in 3T3-L1 preadipocyte cells. This effect depends on the binding of each isoform to specific binding sites. Mutation of either one of these sites induced a 40-50% decrease of the constitutive activity of the hHSD11B1 promoter. A forskolin treatment of 3T3-L1 preadipocyte cells induced an increased endogenous expression of HSD11B1. By transfection studies using the hHSD11B1 luciferase constructs, it appears that C/EBPbeta was strongly involved in this induction, as the forskolin stimulation was suppressed after mutation of the C/EBPbeta binding site. Part of the mechanism involved the increase of nuclear C/EBPbeta protein levels induced by forskolin and a phosphorylation step associated with an enhanced binding of the transcription factor to its site. These data indicate that members of the C/EBP family control intracellular levels of GC in preadipocytes via the regulation of the constitutive and cAMP-dependent expressions of HSD11B1.


Subject(s)
11-beta-Hydroxysteroid Dehydrogenase Type 1/genetics , Adipocytes/metabolism , CCAAT-Enhancer-Binding Proteins/physiology , Cyclic AMP/physiology , Transcription, Genetic/physiology , 11-beta-Hydroxysteroid Dehydrogenase Type 1/drug effects , 11-beta-Hydroxysteroid Dehydrogenase Type 1/metabolism , Adipocytes/drug effects , Animals , Base Sequence , Cell Line , Cyclic AMP/pharmacology , Humans , Mice , Molecular Sequence Data , Promoter Regions, Genetic , Protein Isoforms/physiology , Rats , Sequence Alignment , Transcription, Genetic/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...