Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(11)2022 Jun 02.
Article in English | MEDLINE | ID: mdl-35683258

ABSTRACT

Herein, we report a feasible method for forming barrel-like hybrid Cu(OH)2-ZnO structures on α-brass substrate via low-potential electro-oxidation in 1 M NaOH solution. The presented study was conducted to investigate the electrochemical behavior of CuZn in a passive range (-0.2 V-0.5 V) and its morphological changes that occur under these conditions. As found, morphology and phase composition of the grown layer strongly depend on the applied potential, and those material characteristics can be tuned by varying the operating conditions. To the best of our knowledge, the yielded morphology of barrel-like structure has not been previously observed for brass anodizing. Additionally, photoactivity under both UV and daylight irradiation-induced degradation of organic dye (methyl orange) using Cu(OH)2-ZnO composite was explored. Obtained results proved photocatalytic activity of the material that led to degradation of 43% and 36% of the compound in UV and visible light, respectively. The role of Cu(OH)2 in improving ZnO photoactivity was recognized and discussed. As implied by both the undertaken research and the literature on the subject, cupric hydroxide can act as a trap for photoexcited electrons, and thus contributes to stabilizing electron-hole recombination. This resulted in improved light-absorbing properties of the photoactive component, ZnO.

2.
Polymers (Basel) ; 12(4)2020 Apr 21.
Article in English | MEDLINE | ID: mdl-32326362

ABSTRACT

Biomass pellets provide a pivotal opportunity in promising energy transition scenarios as a renewable source of energy. A large share of the current utilization of pellets is facilitated by intensive global trade operations. Considering the long distance between the production site and the end-user locations, pellets may face fluctuating storage conditions, resulting in their physical and chemical degradation. We tested the effect of different storage conditions, from freezing temperatures (-19 °C) to high temperature (40 °C) and humidity conditions (85% relative humidity), on the physicochemical properties of untreated and torrefied biomass pellets. Moreover, the effect of sudden changes in the storage conditions on pellet properties was studied by moving the pellets from the freezing to the high temperature and relative humidity conditions and vice versa. The results show that, although storage at one controlled temperature and RH may degrade the pellets, a change in the temperature and relative humidity results in higher degradation in terms of higher moisture uptake and lower mechanical strength.

SELECTION OF CITATIONS
SEARCH DETAIL
...