Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
Anal Bioanal Chem ; 416(20): 4605-4618, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38965103

ABSTRACT

"Purple Drank", a soft drink containing promethazine (PMZ) and codeine (COD), has gained global popularity for its hallucinogenic effects. Consuming large amounts of this combination can lead to potentially fatal events. The binding of these drugs to plasma proteins can exacerbate the issue by increasing the risk of drug interactions, side effects, and/or toxicity. Herein, the binding affinity to human serum albumin (HSA) of PMZ and its primary metabolites [N-desmethyl promethazine (DMPMZ) and promethazine sulphoxide (PMZSO)], along with COD, was investigated by high-performance affinity chromatography (HPAC) though zonal approach. PMZ and its metabolites exhibited a notable binding affinity for HSA (%b values higher than 80%), while COD exhibited a %b value of 65%. To discern the specific sites of HSA to which these compounds were bound, displacement experiments were performed using warfarin and (S)-ibuprofen as probes for sites I and II, respectively, which revealed that all analytes were bound to both sites. Molecular docking studies corroborated the experimental results, reinforcing the insights gained from the empirical data. The in silico data also suggested that competition between PMZ and its metabolites with COD can occur in both sites of HSA, but mainly in site II. As the target compounds are chiral, the enantioselectivity for HSA binding was also explored, showing that the binding for these compounds was not enantioselective.


Subject(s)
Chromatography, Affinity , Codeine , Molecular Docking Simulation , Promethazine , Protein Binding , Humans , Promethazine/metabolism , Promethazine/chemistry , Codeine/metabolism , Codeine/chemistry , Chromatography, Affinity/methods , Serum Albumin, Human/chemistry , Serum Albumin, Human/metabolism , Binding Sites , Chromatography, High Pressure Liquid/methods
2.
Forensic Sci Int ; 361: 112128, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39002412

ABSTRACT

Wastewater based epidemiology (WBE) has been used worldwide to estimate drug consumption routinely. Even though WBE provides valuable data to support legal and health interventions associated to drug use, monitoring studies in Portuguese wastewaters are scarce. Hence, this work aimed to estimate the consumption of some conventional abuse and illicit drugs such as amphetamine (AMP), methamphetamine (MAMP), 3,4-methylenedioxymethamphetamine (MDMA), and the synthetic cathinones buphedrone (BPD), butylone (BTL), 3,4-dimethylmethcathinone (3,4-DMMC) and 3-methylmethcathinone (3-MMC), considering not only the liquid phase, but also the suspended particulate matter (SPM). Moreover, the enantiomeric profiling of the samples was studied, exploring for the first time the possible enantioselective sorption of these drugs onto SPM. For that, 24 h composite raw wastewaters were collected from a conventional wastewater treatment plant (WWTP) in Portugal. After extraction, the liquid phase and SPM extracts were derivatized with an enantiomerically pure reagent and then, analysed using a gas chromatography-mass spectrometry (GC-MS) analytical method. The results showed a low and non-enantioselective adsorption to SPM at environmental relevant levels. Only (S)-AMP was detected in two SPM samples, whereas AMP, MAMP, MDMA, BPD, and 3,4-DMMC were detected in the liquid phase. AMP was the most frequently found drug with an estimated load up to 166.0 mg day-1 1000 people-1 and mostly found with enrichment of (S)-AMP. Nevertheless, (R)-AMP was also determined, which may be related to the consumption of either the illicit racemic AMP or the medicine (R)-deprenyl. The use of MDMA, MAMP and synthetic cathinones (BPD and 3,4-DMMC) was also suggested in Portugal. Nevertheless, the levels and the consumption estimate of the target chemicals were lower than in other European countries or worldwide. These findings provide the first step to the implementation of WBE monitoring campaigns to assess the status of drug consumption in Portuguese communities, contributing to the understanding of drug use patterns and trends worldwide and helping enforce preventive measures.


Subject(s)
Alkaloids , Amphetamines , Gas Chromatography-Mass Spectrometry , Particulate Matter , Wastewater , Wastewater/chemistry , Alkaloids/analysis , Portugal , Humans , Stereoisomerism , Amphetamines/analysis , Particulate Matter/analysis , Illicit Drugs/analysis , Illicit Drugs/chemistry , Water Pollutants, Chemical/analysis , Substance Abuse Detection/methods
3.
J Pharm Biomed Anal ; 245: 116152, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38643704

ABSTRACT

The misuse of pharmaceuticals has significantly increased in recent decades, becoming a major public health concern. The risks associated with medication misuse are particularly high in cases of overdose, especially when the active substances are chiral, as enantioselectivity plays an important role in toxicity. Promethazine (PMZ) is a chiral antihistamine marketed as a racemate and it is misused in "Purple Drank", a recreational drug beverage, that combines codeine and/or PMZ, with soda or alcohol leading to serious health consequences and fatalities in consumers around the world, particularly among teenagers. Information regarding the enantioselectivity in the toxicity of (R,S)-PMZ and its main metabolites, namely promethazine sulfoxide (PMZSO) and desmonomethyl promethazine (DMPMZ), is unknown. This work reported, for the first time, the enantioseparation, in milligram scale, of (R,S)-PMZ, (R,S)-DMPMZ, (R,S)- PMZSO and the determination of their absolute configurations by electronic circular dichroism (ECD). The enantioseparation of all the six enantiomers was accomplished in a homemade semi-preparative column with amylose tris-3,5-dimethylphenylcarbamate (AD) coated with aminopropyl Nucleosil silica. The enantiomeric purity was evaluated using the analytical Lux® 3 µm i-Amylose-3 column, yielding enantiomeric purity values ranging between 94.4% and 99.7%. The elution order of all the enantiomers was accomplished combining the ECD results with an optical rotation detector. The elution order of the enantiomers was influenced only by the chiral selector, rather than the mobile phase. The cytotoxicity of the racemates and the isolated enantiomers towards differentiated SH-SY5Y cells was evaluated. (R,S)-DMPMZ exhibited a significantly higher cytotoxicity than (R,S)-PMZ, suggesting the metabolic bioactivation of (R,S)-PMZ. Conversely, no significant cytotoxicity was found for (R,S)-PMZSO, underscoring a metabolic detoxification pathway. Remarkably, enantioselectivity was observed for the cytotoxicity of PMZ; (R)-PMZ was significantly more cytotoxic than (S)-PMZ. The results underscore the importance to isolate the enantiomers in their enantiomerically form and their correct identification for toxicity enantioselectivity studies, which are vital to understand the drug's behaviour and safety, especially in case of overdoses.


Subject(s)
Promethazine , Promethazine/chemistry , Stereoisomerism , Humans , Cell Line, Tumor , Circular Dichroism/methods , Cell Survival/drug effects , Chromatography, High Pressure Liquid/methods
4.
Aquat Toxicol ; 271: 106906, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38588636

ABSTRACT

Butylone (BTL) is a chiral synthetic cathinone available as a racemate and reported as contaminant in wastewater effluents. However, there are no studies on its impact on ecosystems and possible enantioselectivity in ecotoxicity. This work aimed to evaluate: (i) the possible ecotoxicity of BTL as racemate or its isolated (R)- and (S)- enantiomers using Daphnia magna; and (ii) the efficiency of advanced oxidation technologies (AOTs) in the removal of BTL and reduction of toxic effects caused by wastewaters. Enantiomers of BTL were obtained by liquid chromatography (LC) using a chiral semi-preparative column. Enantiomeric purity of each enantiomer was > 97 %. For toxicity assessment, a 9-day sub-chronic assay was performed with the racemate (at 0.10, 1.0 or 10 µg L-1) or each enantiomer (at 0.10 or 1.0 µg L-1). Changes in morphophysiological, behavioural, biochemical and reproductive endpoints were observed, which were dependent on the form of the substance and life stage of the organism (juvenile or adult). Removal rates of BTL in spiked wastewater (10 µg L-1) treated with different AOTs (ultraviolet, UV; ozonation, O3; and UV/O3) were similar and lower than 29 %. The 48 h D. magna acute toxicity assays demonstrated a reduction in the toxicity of the treated spiked effluents, but no differences were found amongst AOTs treatments. These results warn for the contamination and negative impact of BTL on ecosystems and highlight the need for efficient removal processes.


Subject(s)
Daphnia , Oxidation-Reduction , Water Pollutants, Chemical , Daphnia/drug effects , Animals , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/chemistry , Stereoisomerism , Wastewater/chemistry , Wastewater/toxicity , Daphnia magna
5.
Sci Total Environ ; 933: 172824, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38688370

ABSTRACT

A recently synthesized aminated 3,4-dioxygenated xanthone (Xantifoul2) was found to have promising antifouling (AF) effects against the settlement of the macrofouler Mytilus galloprovincialis larvae. Preliminary assessment indicated that Xantifoul2 has reduced ecotoxicological impacts: e.g., being non-toxic to the marine crustacea Artemia salina (<10 % mortality at 50 µM) and showing low bioconcentration factor in marine organisms. In order to meet the EU Biocidal Product Regulation, a preliminary hazard assessment of this new nature-inspired antifouling (NIAF) agent was conducted in this work. Xantifoul2 did not affect the swimming ability of the planktonic crustacean Daphnia magna, the growth of the diatom Phaeodactylum tricornutum, and the cellular respiration of luminescent Gram-negative bacteria Vibrio fischeri, supporting the low toxicity towards several non-target marine species. Regarding human cytotoxicity, Xantifoul2 did not affect the cell viability of retinal human cells (hTERT-RPE-1) and lipidomic studies revealed depletion of lipids involved in cell death, membrane modeling, lipid storage, and oxidative stress only at a high concentration (10 µM). Accelerated degradation studies in water were conducted under simulated sunlight to allow the understanding of putative transformation products (TPs) that could be generated in the aquatic ecosystems. Both Xantifoul2 and photolytic-treated Xantifoul2 in the aqueous matrix were therefore evaluated on several nuclear receptors (NRs). The results of this preliminary hazard assessment of Xantifoul2, combined with the high degradation rates in water, provide strong evidence of the safety of this AF agent under the evaluated conditions, and provide the support for future validation studies before this compound can be introduced in the market.


Subject(s)
Biofouling , Biofouling/prevention & control , Animals , Water Pollutants, Chemical/toxicity , Aliivibrio fischeri/drug effects , Xanthones/toxicity , Mytilus/drug effects , Mytilus/physiology , Diatoms/drug effects , Humans , Daphnia/drug effects , Daphnia/physiology , Artemia/drug effects
6.
Int J Mol Sci ; 25(4)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38396802

ABSTRACT

Cancer is a complex disease characterized by several alterations, which confer, to the cells, the capacity to proliferate uncontrollably and to resist cellular death. Multiresistance to conventional chemotherapy drugs is often the cause of treatment failure; thus, the search for natural products or their derivatives with therapeutic action is essential. Chiral derivatives of xanthones (CDXs) have shown potential inhibitory activity against the growth of some human tumor cell lines. This work reports the screening of a library of CDXs, through viability assays, in different cancer cell lines: A375-C5, MCF-7, NCI-H460, and HCT-15. CDXs' effect was analyzed based on several parameters of cancer cells, and it was also verified if these compounds were substrates of glycoprotein-P (Pgp), one of the main mechanisms of resistance in cancer therapy. Pgp expression was evaluated in all cell lines, but no expression was observed, except for HCT-15. Also, when a humanized yeast expressing the human gene MDR1 was used, no conclusions could be drawn about CDXs as Pgp substrates. The selected CDXs did not induce significant differences in the metabolic parameters analyzed. These results show that some CDXs present promising antitumor activity, but other mechanisms should be triggered by these compounds.


Subject(s)
Amino Acids , Xanthones , Humans , Xanthones/pharmacology , Xanthones/chemistry , Cell Line, Tumor , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
7.
Int J Mol Sci ; 24(12)2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37373503

ABSTRACT

In recent decades, the relationship between drug chirality and biological activity has been assuming enormous importance in medicinal chemistry. Particularly, chiral derivatives of xanthones (CDXs) have interesting biological activities, including enantioselective anti-inflammatory activity. Herein, the synthesis of a library of CDXs is described, by coupling a carboxyxanthone (1) with both enantiomers of proteinogenic amino esters as chiral building blocks (2-31), following the chiral pool strategy. The coupling reactions were performed at room temperature with good yields (from 44 to 99.9%) and very high enantiomeric purity, with most of them presenting an enantiomeric ratio close to 100%. To afford the respective amino acid derivatives (32-61), the ester group of the CDXs was hydrolyzed in mild alkaline conditions. Consequently, in this work, sixty new derivatives of CDXs were synthetized. The cytocompatibility and anti-inflammatory activity in the presence of M1 macrophages were studied for forty-four of the new synthesized CDXs. A significant decrease in the levels of a proinflammatory cytokine targeted in the treatment of several inflammatory diseases, namely interleukin 6 (IL-6), was achieved in the presence of many CDXs. The amino ester of L-tyrosine (X1AELT) was the most effective in reducing IL-6 production (52.2 ± 13.2%) by LPS-stimulated macrophages. Moreover, it was ≈1.2 times better than the D-enantiomer. Indeed, enantioselectivity was observed for the majority of the tested compounds. Thus, their evaluation as promising anti-inflammatory drugs should be considered.


Subject(s)
Amino Acids , Xanthones , Xanthones/pharmacology , Xanthones/chemistry , Interleukin-6 , Anti-Inflammatory Agents/pharmacology , Stereoisomerism
8.
Environ Toxicol Chem ; 42(8): 1743-1754, 2023 08.
Article in English | MEDLINE | ID: mdl-37170962

ABSTRACT

Amphetamine (AMP) is a chiral psychoactive substance that exhibits enantioselectivity in its pharmacological properties. It has been detected in wastewaters and surface waters and can occur as enantiomeric mixtures, but little is known about its environmental risk and potential enantioselective toxicity to aquatic organisms. Our study aimed to target enantioselectivity in AMP toxicity to the freshwater invertebrate Daphnia magna. Daphnids were subchronically exposed to the racemate (rac-AMP: 0.1, 1.0, and 10 µg/L) and pure enantiomers, (R)-AMP and (S)-AMP (0.1, and 1.0 µg/L, respectively), for 8 days. Morphophysiological, swimming behavior, reproductive and biochemical variables were evaluated during critical life stages (juveniles vs. adults). Some responses were context-dependent and often enantioselective, varying between racemate and enantiomers and across the life stage of the organisms. Overall, rac-AMP stimulated D. magna growth, decreased heart rate and area, affected behavior, and stimulated reproduction. The effect of enantiomers was totally or partially concordant with rac-AMP, except for swimming behavior and reproduction. Enantioselectivity was observed for body size, number of eggs/daphnia, and heart rate (steeper decrease caused by (R)-AMP on day 3). Changes in biochemical parameters were also observed: AMP caused a significant decrease in catalase activity as racemate or pure enantiomers, whereas a decrease in acetylcholinesterase activity was found only for rac-AMP. Evidence for oxidative stress was contradictory, although both enantiomers caused a significant decrease in reactive oxygen species (unlike rac-AMP). Overall, these results show that AMP can interfere in an enantioselective way with aquatic organisms at low concentrations (e.g., 0.1 µg/L), demonstrating the relevance of this kind of study to an accurate environmental risk assessment regarding medium- to long-term exposure to this psychoactive drug. Environ Toxicol Chem 2023;42:1743-1754. © 2023 SETAC.


Subject(s)
Daphnia , Water Pollutants, Chemical , Animals , Acetylcholinesterase , Aquatic Organisms , Reproduction , Water Pollutants, Chemical/analysis , Amphetamines/pharmacology
9.
Molecules ; 28(8)2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37110699

ABSTRACT

The growing threat of climatic crisis and fossil fuel extinction has caused a boom in sustainability trends. Consumer demand for so-called eco-friendly products has been steadily increasing, built upon the foundation of environmental protection and safeguarding for future generations. A natural product that has been used for centuries is cork, resulting from the outer bark of Quercus suber L. Currently, its major application is the production of cork stoppers for the wine industry, a process that, although considered sustainable, generates by-products in the form of cork powder, cork granulates, or waste such as black condensate, among others. These residues possess constituents of interest for the cosmetic and pharmaceutical industries, as they exhibit relevant bioactivities, such as anti-inflammatory, antimicrobial, and antioxidant. This interesting potential brings forth the need to develop methods for their extraction, isolation, identification, and quantification. The aim of this work is to describe the potential of cork by-products for the cosmetic and pharmaceutical industry and to assemble the available extraction, isolation, and analytical methods applied to cork by-products, as well the biological assays. To our knowledge, this compilation has never been done, and it opens new avenues for the development of new applications for cork by-products.


Subject(s)
Quercus , Quercus/chemistry , Pharmaceutical Preparations
10.
Molecules ; 28(7)2023 Mar 23.
Article in English | MEDLINE | ID: mdl-37049662

ABSTRACT

Synthetic cathinones (SC) are drugs of abuse that have been reported in wastewaters and rivers raising concern about potential hazards to non-target organisms. In this work, 44 SC were selected for in silico studies, and a group of five emerging SC was prioritized for further in vivo ecotoxicity studies: buphedrone (BPD), 3,4-dimethylmethcathinone (3,4-DMMC), butylone (BTL), 3-methylmethcathinone (3-MMC), and 3,4-methylenedioxypyrovalerone (MDPV). In vivo short-term exposures were performed with the protozoan Tetrahymena thermophila (28 h growth inhibition assay) and the microcrustacean Daphnia magna by checking different indicators of toxicity across life stage (8 days sublethal assay at 10.00 µg L-1). The in silico approaches predicted a higher toxic potential of MDPV and lower toxicity of BTL to the model organisms (green algae, protozoan, daphnia, and fish), regarding the selected SC for the in vivo experiments. The in vivo assays showed protozoan growth inhibition with MDPV > BPD > 3,4-DMMC, whereas no effects were observed for BTL and stimulation of growth was observed for 3-MMC. For daphnia, the responses were dependent on the substance and life stage. Briefly, all five SC interfered with the morphophysiological parameters of juveniles and/or adults. Changes in swimming behavior were observed for BPD and 3,4-DMMC, and reproductive parameters were affected by MDPV. Oxidative stress and changes in enzymatic activities were noted except for 3-MMC. Overall, the in silico data agreed with the in vivo protozoan experiments except for 3-MMC, whereas daphnia in vivo experiments showed that at sublethal concentrations, all selected SC interfered with different endpoints. This study shows the importance to assess SC ecotoxicity as it can distress aquatic species and interfere with food web ecology and ecosystem balance.


Subject(s)
Synthetic Drugs , Tetrahymena thermophila , Water Pollutants, Chemical , Animals , Synthetic Cathinone , Daphnia , Synthetic Drugs/pharmacology , Ecosystem , Water Pollutants, Chemical/toxicity
11.
Antioxidants (Basel) ; 12(2)2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36829986

ABSTRACT

Echinacea purpurea is traditionally used in the treatment of inflammatory diseases. Therefore, we investigated the anti-inflammatory capacity of E. purpurea dichloromethanolic (DE) and ethanolic extracts obtained from flowers and roots (R). To identify the class of compounds responsible for the strongest bioactivity, the extracts were fractionated into phenol/carboxylic acid (F1) and alkylamide fraction (F2). The chemical fingerprint of bioactive compounds in the fractions was evaluated by LC-HRMS. E. purpurea extracts and fractions significantly reduced pro-inflammatory cytokines (interleukin 6 and/or tumor necrosis factor) and reactive oxygen and nitrogen species (ROS/RNS) production by lipopolysaccharide-stimulated primary human monocyte-derived macrophages. Dichloromethanolic extract obtained from roots (DE-R) demonstrated the strongest anti-inflammatory activity. Moreover, fractions exhibited greater anti-inflammatory activity than whole extract. Indeed, alkylamides must be the main compounds responsible for the anti-inflammatory activity of extracts; thus, the fractions presenting high content of these compounds presented greater bioactivity. It was demonstrated that alkylamides exert their anti-inflammatory activity through the downregulation of the phosphorylation of p38, ERK 1/2, STAT 3, and/or NF-κB signaling pathways, and/or downregulation of cyclooxygenase 2 expression. E. purpurea extracts and fractions, mainly DE-R-F2, are promising and powerful plant-based anti-inflammatory formulations that can be further used as a basis for the treatment of inflammatory diseases.

12.
Molecules ; 28(3)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36771119

ABSTRACT

MDMA (3,4-methylenedioxymethamphetamine) is a chiral psychoactive recreational drug sold in illicit markets as racemate. Studies on the impact of MDMA on aquatic organisms are scarce. While enantioselectivity in toxicity in animals and humans has been reported, none is reported on aquatic organisms. This study aimed to investigate the ecotoxicological effects of MDMA and its enantiomers in Daphnia magna. For that, enantiomers (enantiomeric purity > 97%) were separated by liquid chromatography using a homemade semipreparative chiral column. Daphnids were exposed to three concentrations of (R,S)-MDMA (0.1, 1.0 and 10.0 µg L-1) and two concentrations of (R)- and (S)-enantiomers (0.1 and 1.0 µg L-1) over the course of 8 days. Morphophysiological responses were dependent on the substance form and daphnia development stage, and they were overall not affected by the (R)-enantiomer. Changes in swimming behaviour were observed for both the racemate and its enantiomers, but enantioselective effects were not observed. Reproductive or biochemical changes were not observed for enantiomers whereas a significant decrease in acetylcholinesterase and catalase activity was noted at the highest concentration of (R,S)-MDMA (10 µg L-1). Overall, this study showed that sub-chronic exposure to MDMA racemate and its enantiomers can interfere with morphophysiological and swimming behaviour of D. magna. In general, the (R)-enantiomer demonstrated less toxicity than the (S)-enantiomer.


Subject(s)
Daphnia , N-Methyl-3,4-methylenedioxyamphetamine , Animals , Humans , N-Methyl-3,4-methylenedioxyamphetamine/toxicity , Stereoisomerism , Acetylcholinesterase/pharmacology , Chromatography
13.
Molecules ; 28(1)2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36615614

ABSTRACT

Stereoselective synthesis has been emerging as a resourceful tool because it enables the obtaining of compounds with biological interest and high enantiomeric purity. Flavonoids are natural products with several biological activities. Owing to their biological potential and aiming to achieve enantiomerically pure forms, several methodologies of stereoselective synthesis have been implemented. Those approaches encompass stereoselective chalcone epoxidation, Sharpless asymmetric dihydroxylation, Mitsunobu reaction, and the cycloaddition of 1,4-benzoquinone. Chiral auxiliaries, organo-, organometallic, and biocatalysis, as well as the chiral pool approach were also employed with the goal of obtaining chiral bioactive flavonoids with a high enantiomeric ratio. Additionally, the employment of the Diels-Alder reaction based on the stereodivergent reaction on a racemic mixture strategy or using catalyst complexes to synthesise pure enantiomers of flavonoids was reported. Furthermore, biomimetic pathways displayed another approach as illustrated by the asymmetric coupling of 2-hydroxychalcones driven by visible light. Recently, an asymmetric transfer hydrogen-dynamic kinetic resolution was also applied to synthesise (R,R)-cis-alcohols which, in turn, would be used as building blocks for the stereoselective synthesis of flavonoids.


Subject(s)
Biological Products , Flavonoids , Catalysis , Stereoisomerism , Biocatalysis
14.
Int J Mol Sci ; 23(21)2022 Nov 06.
Article in English | MEDLINE | ID: mdl-36362404

ABSTRACT

Inflammatory diseases are the focus of several clinical studies, due to limitations and serious side effects of available therapies. Plant-based drugs (e.g., salicylic acid, morphine) have become landmarks in the pharmaceutical field. Therefore, we investigated the immunomodulatory effects of flowers, leaves, and roots from Echinacea purpurea. Ethanolic (EE) and dichloromethanolic extracts (DE) were obtained using the Accelerated Solvent Extractor and aqueous extracts (AE) were prepared under stirring. Their chemical fingerprint was evaluated by liquid chromatography-high resolution mass spectrometry (LC-HRMS). The pro- and anti-inflammatory effects, as well as the reduction in intracellular reactive oxygen and nitrogen species (ROS/RNS), of the different extracts were evaluated using non-stimulated and lipopolysaccharide-stimulated macrophages. Interestingly, AE were able to stimulate macrophages to produce pro-inflammatory cytokines (tumor necrosis factor -TNF-α, interleukin -IL-1ß, and IL-6), and to generate ROS/RNS. Conversely, under an inflammatory scenario, all extracts reduced the amount of pro-inflammatory mediators. DE, alkylamides-enriched extracts, showed the strongest anti-inflammatory activity. Moreover, E. purpurea extracts demonstrated generally a more robust anti-inflammatory activity than clinically used anti-inflammatory drugs (dexamethasone, diclofenac, salicylic acid, and celecoxib). Therefore, E. purpurea extracts may be used to develop new effective therapeutic formulations for disorders in which the immune system is either overactive or impaired.


Subject(s)
Biological Products , Echinacea , Inflammation Mediators , Reactive Oxygen Species , Plant Extracts/pharmacology , Adjuvants, Immunologic , Tumor Necrosis Factor-alpha , Anti-Inflammatory Agents/pharmacology , Salicylic Acid
15.
J Chromatogr A ; 1684: 463555, 2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36244235

ABSTRACT

Diverse approaches have been explored as chromatographic supports for chiral stationary phases (CSPs) in liquid chromatography (LC), such as the introduction of nanoparticles, superficially porous particles, and new materials including monoliths, metal-organic frameworks, covalent-organic frameworks as well as hybrid chromatographic supports. Nevertheless, silica-based CSPs are still nowadays the most successfully and widely applied. In this review, the most relevant achievements related with chromatographic supports used for development of CSPs for LC are described. The advantages and drawbacks of the different materials used as chromatographic supports are critically discussed. Some recent examples of applications are also presented, emphasizing innovative trends in LC.


Subject(s)
Metal-Organic Frameworks , Silicon Dioxide , Stereoisomerism , Chromatography, Liquid/methods , Silicon Dioxide/chemistry , Porosity
16.
Mar Drugs ; 20(9)2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36135737

ABSTRACT

The development of marine-inspired compounds as non-toxic antifouling (AF) agents has been pursued in the last years. Sulfur is the third most common element in seawater. Sulfur is present in oxygenated seawater as sulfate anion (SO42-), which is the most stable combination of sulfur in seawater, and several promising AF secondary metabolites with sulfate groups have been described. However, sulfated compounds proved to be an analytical challenge to quantify by HPLC. Taking these facts into consideration, this work presents the development and validation of a method for the quantification of gallic acid persulfate (GAP) in seawater and ultrapure water matrix, based on hydrophilic interaction liquid chromatography (HILIC). This method was used to evaluate GAP stability following several abiotic and biotic degradation assays, and to quantify its release in seawater from room-temperature-vulcanizing polydimethylsiloxane commercial coating. GAP was very stable in several water matrices, even at different pH values and in the presence/absence of marine microorganisms and presented a leaching value lower than 0.5%. This work discloses HILIC as an analytical method to overcome the difficulties in quantifying sulfated compounds in water matrices and highlights the potential of GAP as a promising long-lasting coating.


Subject(s)
Biofouling , Biofouling/prevention & control , Dimethylpolysiloxanes , Gallic Acid , Seawater/chemistry , Sulfates , Sulfur , Water
17.
Crit Rev Anal Chem ; : 1-16, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35776702

ABSTRACT

Knowing the impacts of bisphenol A (BPA) on human health, this systematic review aimed to gather the analytical methods for the quantification of BPA release of BPA in dental materials in in vitro and in vivo (biological fluids) studies. A brief critical discussion of the impacts of BPA on human health and the possible association with BPA in dental materials was also presented. The research was carried out by three independent researchers, (according to PRISMA guidelines) in PUBMED and SCOPUS databases, by searching for specific keywords and articles published between January 2011 and February 2022. Seventeen articles met the eligibility criteria and were included in this systematic review: 10 in vitro and 7 in vivo. In in vitro studies, the highest amounts of BPA released were from flowable to conventional resins, followed by resin-modified glass ionomer. In contrast, the smallest amount was released from "BPA-free" composites and CAD-CAM blocks. Regarding in vivo studies, a higher concentration of BPA were found in saliva than urine or blood. The best analytical method for trace quantifying BPA is LC-MS/MS (Liquid Chromatography with Tandem Mass Spectrometry) due to its selectivity, low quantification limits, and the unequivocal identification. However, further studies are required to develop faster and more sensitive methods, in order to obtain more reliable results.

18.
J Chromatogr A ; 1675: 463156, 2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35623191

ABSTRACT

Liquid chromatography is the most applied methodology for enantioseparation in preparative and semi-preparative scale; however, flash chromatography is seldom the first choice. This work proposes a new sustainable method to achieve pure enantiomers in mg scale. Herein, the functionalization of silica for flash chromatography columns with a suitable chiral selector, for subsequent quantitative enantioseparation of chiral compounds, is described. Accordingly, the Whelk-O®1 chiral selector was bonded to flash silica and packed into a reused solid phase extraction cartridge. For the evaluation of the enantioselective performance of the flash column, the enantiomers of a chiral derivative of xanthone were quantitatively enantioseparated with an average recovery of 70% and an enantiomer ratio (e.r.) of 99% and 97% for each enantiomer. Evaluation with the anti-inflammatory drug naproxen was also performed, resulting in an average recovery of 95% and 89% and 95% e.r. for each enantiomer. The flash column showed high stability and load ability, versatility, and good reproducibility.


Subject(s)
Silicon Dioxide , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid , Reproducibility of Results , Silicon Dioxide/chemistry , Stereoisomerism
19.
Environ Toxicol Chem ; 41(8): 1851-1864, 2022 08.
Article in English | MEDLINE | ID: mdl-35452529

ABSTRACT

Venlafaxine is a chiral antidepressant detected in aquatic compartments. It was recently included in the 3rd Watch List from the European Union. The present study aimed to investigate venlafaxine toxicity effects, targeting possible enantioselective effects, using two aquatic organisms, daphnia (Daphnia magna) and zebrafish (Danio rerio). Specimens were exposed to both racemate, (R,S)-venlafaxine (VEN), and to pure enantiomers. Acute assays with daphnia showed that up to 50 000 µg/L of the (R,S)-VEN induced no toxicity. Organisms were also exposed to sublethal concentrations (25-400 µg/L) of (R,S)-, (R)- and (S)-VEN, for 21 days. No significant effects on mortality, age at first reproduction, and size of the first clutch were observed. However, a decrease in fecundity was observed for both enantiomers at the highest concentration. Regarding zebrafish, the effects of venlafaxine on mortality, embryo development, behavior, biochemistry, and melanin pigmentation were investigated after 96 h of exposure to the range of 0.3-3000 µg/L. (R)-VEN significantly increased the percentage of malformations in comparison with (S)-VEN. Behavior was also enantiomer dependent, with a decrease in the total distance moved and an increase in avoidance behavior observed in organisms exposed to (R)-VEN. Despite the biochemical variations, no changes in redox homeostasis were observed. (R)-VEN also led to an increase in zebrafish pigmentation. The different susceptibility to venlafaxine and enantioselective effects were observed in zebrafish. Our results suggest that at environmental levels (R,S)-VEN and pure enantiomers are not expected to induce harmful effects in both organisms, but (R)-VEN increased malformations in zebrafish larvae, even at reported environmental levels. These results highlight the importance of including enantioselective studies for an accurate risk assessment of chiral pollutants. Environ Toxicol Chem 2022;41:1851-1864. © 2022 SETAC.


Subject(s)
Daphnia , Water Pollutants, Chemical , Animals , Aquatic Organisms , Stereoisomerism , Venlafaxine Hydrochloride/toxicity , Water Pollutants, Chemical/chemistry , Zebrafish
20.
Environ Toxicol Chem ; 41(3): 569-579, 2022 03.
Article in English | MEDLINE | ID: mdl-33289946

ABSTRACT

Ketamine is a chiral drug used for various clinical purposes but often misused. It is metabolized to norketamine, an active chiral metabolite. Both substances have been detected in environmental matrices, but studies about their enantioselective toxic effects are scarce. In the present study, the enantiomers of ketamine and norketamine were separated by a semipreparative enantioselective liquid chromatography method, and their toxicity was investigated in different aquatic organisms. The enantioseparation was achieved using a homemade semipreparative chiral column. Optimized conditions allowed the recovery of compounds with enantiomeric purity higher than 99%, except for (R)-ketamine (97%). The absolute configuration of the enantiomers was achieved by experimental electronic circular dichroism (ECD). The ecotoxicity assays were performed with the microcrustacean Daphnia magna and the protozoan Tetrahymena thermophila using Toxkit MicroBioTests. Different concentrations were tested (0.1-10 000 µg/L) to include environmental levels (~0.5-~100 µg/L), for racemates (R,S) and the isolated enantiomers (R or S) of ketamine and norketamine. No toxicity was observed in either organism at environmental levels. However, at greater concentrations, (R,S)-ketamine presented higher mortality for D. magna compared with its metabolite (R,S)-norketamine (85 and 20%, respectively), and the (S)-ketamine enantiomer showed higher toxicity than the (R)-ketamine enantiomer. In addition, (S)-ketamine also presented higher growth inhibition than (R)-ketamine for T. thermophila at the highest concentrations (5000 and 10 000 µg/L). Contrary to D. magna, growth inhibition was observed for both enantiomers of norketamine and in the same magnitude order of the (S)-ketamine enantiomer. The results showed that the 2 organisms had different susceptibilities to norketamine and that the toxicity of ketamine at high concentrations is enantioselective for both organisms. Environ Toxicol Chem 2022;41:569-579. © 2020 SETAC.


Subject(s)
Ketamine , Animals , Chromatography, Liquid/methods , Daphnia/metabolism , Ketamine/analogs & derivatives , Ketamine/chemistry , Ketamine/toxicity , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL