Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Sci ; 129(2): 268-79, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22821849

ABSTRACT

Ibipinabant (IBI), a potent cannabinoid-1 receptor (CB1R) antagonist, previously in development for the treatment of obesity, causes skeletal and cardiac myopathy in beagle dogs. This toxicity was characterized by increases in muscle-derived enzyme activity in serum and microscopic striated muscle degeneration and accumulation of lipid droplets in myofibers. Additional changes in serum chemistry included decreases in glucose and increases in non-esterified fatty acids and cholesterol, and metabolic acidosis, consistent with disturbances in lipid and carbohydrate metabolism. No evidence of CB1R expression was detected in dog striated muscle as assessed by polymerase chain reaction, immunohistochemistry, Western blot analysis, and competitive radioligand binding. Investigative studies utilized metabonomic technology and demonstrated changes in several intermediates and metabolites of fatty acid metabolism including plasma acylcarnitines and urinary ethylmalonate, methylsuccinate, adipate, suberate, hexanoylglycine, sarcosine, dimethylglycine, isovalerylglycine, and 2-hydroxyglutarate. These results indicated that the toxic effect of IBI on striated muscle in beagle dogs is consistent with an inhibition of the mitochondrial flavin-containing enzymes including dimethyl glycine, sarcosine, isovaleryl-CoA, 2-hydroxyglutarate, and multiple acyl-CoA (short, medium, long, and very long chain) dehydrogenases. All of these enzymes converge at the level of electron transfer flavoprotein (ETF) and ETF oxidoreductase. Urinary ethylmalonate was shown to be a biomarker of IBI-induced striated muscle toxicity in dogs and could provide the ability to monitor potential IBI-induced toxic myopathy in humans. We propose that IBI-induced toxic myopathy in beagle dogs is not caused by direct antagonism of CB1R and could represent a model of ethylmalonic-adipic aciduria in humans.


Subject(s)
Adipates/urine , Malonates/urine , Muscle, Skeletal/drug effects , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Animals , Base Sequence , Blotting, Western , Carnitine/blood , DNA Primers , Dogs , Female , Gene Expression Profiling , Immunohistochemistry , Metabolomics , Polymerase Chain Reaction , Radioligand Assay , Receptor, Cannabinoid, CB1/genetics
2.
Toxicol In Vitro ; 19(4): 471-9, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15826805

ABSTRACT

SH-SY5Y human neuroblastoma cells were incubated with 6-hydroxydopamine (6-OHDA) for 4 and 24 h to examine the mechanism of cell death and to determine the time-dependent effects of 6-OHDA on cellular glutathione status. After 4 h, 6-OHDA significantly depleted cellular ATP and GSH concentrations with only slight increases in cell death. GSH:GSSG ratios and mitochondrial membrane potential (Deltapsim) were significantly decreased during 4 h incubations with 6-OHDA. High concentrations of 6-OHDA (100 microM) induced oxidative stress and mitochondrial dysfunction in SH-SY5Y cells within 4 h leading to cell death. In 24 h incubations, 25 and 50 microM 6-OHDA significantly decreased ATP concentrations; however, significant increases in cell death were only observed with 50 microM 6-OHDA. 6-OHDA induced a concentration-dependent increase in GSH and total glutathione concentrations after 24 h. After exposure to 50 microM 6-OHDA, GSH concentrations were increased up to 12-fold after 24 h with no change in the GSH:GSSG ratio. Gene analysis suggests that the increase in GSH concentration was due to increased expression of the GSH synthesis genes glutamate cysteine ligase modifier and catalytic subunits. Our results suggest that 6-OHDA induces oxidative stress in SH-SY5Y cells resulting in an adaptive increase in cellular GSH concentrations.


Subject(s)
Glutathione/metabolism , Mitochondria/metabolism , Neuroblastoma/metabolism , Oxidopamine/pharmacology , Sympatholytics/pharmacology , Adenosine Triphosphate/metabolism , Apoptosis/drug effects , Cell Line, Tumor , Cell Survival/drug effects , DNA, Complementary/biosynthesis , DNA, Complementary/isolation & purification , Dose-Response Relationship, Drug , Gene Expression Regulation, Enzymologic/drug effects , Humans , L-Lactate Dehydrogenase/metabolism , Membrane Potentials/drug effects , Mitochondria/drug effects , RNA/biosynthesis , RNA/isolation & purification , Reverse Transcriptase Polymerase Chain Reaction , Time Factors
3.
Toxicol Sci ; 69(1): 131-8, 2002 Sep.
Article in English | MEDLINE | ID: mdl-12215667

ABSTRACT

Troglitazone (TRO), a member of the thiazolidinedione class of drugs, has been associated with hepatotoxicity in patients. The following in vitro study was conducted to investigate the effects of TRO on mitochondrial function and viability in a human hepatoma cell line, HepG2. TRO induced a concentration- and time-dependent increase in cell death, as measured by lactate dehydrogenase release. Exposure to 50 or 100 micro M TRO produced total loss of cell viability within 5 h. Preincubation of HepG2 cells with P450 inhibitors did not significantly protect against TRO-induced cell death suggesting that P450 metabolism was not required to induce cell death. Preincubation with the mitochondrial permeability transition inhibitor, cyclosporin A, provided complete protection against TRO-induced cell death. Our results also indicated that TRO produced concentration-dependent decreases in cellular ATP levels and mitochondrial membrane potential (MMP). Ultrastructural analysis demonstrated that TRO induced mitochondrial changes at concentrations of > or =10 micro M after 2 h. Decreased MMP and altered mitochondrial morphology occurred at time points that preceded cell death and at sublethal concentrations of TRO. These observations in HepG2 cells suggest that TRO disrupts mitochondrial function, leading to mitochondrial permeability transition and cell death.


Subject(s)
Chromans/pharmacology , Hypoglycemic Agents/pharmacology , Mitochondria, Liver/drug effects , Thiazoles/pharmacology , Thiazolidinediones , Adenosine Triphosphate/metabolism , Cell Death/drug effects , Cell Survival/drug effects , Cytochrome P-450 Enzyme Inhibitors , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacology , Humans , Microscopy, Confocal , Microscopy, Electron , Mitochondria, Liver/ultrastructure , Permeability , Time Factors , Troglitazone , Tumor Cells, Cultured
4.
Toxicol Sci ; 68(1): 93-101, 2002 Jul.
Article in English | MEDLINE | ID: mdl-12075114

ABSTRACT

Although they are known to be effective antidiabetic agents, little is published about the toxic effects of carnitine palmitoyltransferase-1 (CPT-1) inhibitors, such as etomoxir (ET). These compounds inhibit mitochondrial fatty acid beta-oxidation by irreversibly binding to CPT-1 and preventing entry of long chain fatty acids into the mitochondrial matrix. Treatment of HepG2 cells with 1 mM etomoxir for 6 h caused significant modulations in the expression of several redox-related and cell cycle mRNAs as measured by microarray analysis. Upregulated mRNAs included heme oxygenase 1 (HO1), 8-oxoguanine DNA glycosylase 1 (OGG1), glutathione reductase (GSR), cyclin-dependent kinase inhibitor 1A (CDKN1 [p21(waf1)]) and Mn+ superoxide dismutase precursor (SOD2); while cytochrome P450 1A1 (CYP1A1) and heat shock 70kD protein 1 (HSPA1A) were downregulated. Real time quantitative PCR (RT-PCR) confirmed the significant changes in 4 of 4 mRNAs assayed (CYP1A1, HO1, GSR, CDKN1), and identified 3 additional mRNA changes; 2 redox-related genes, gamma-glutamate-cysteine ligase modifier subunit (GCLM) and thioredoxin reductase (TXNRD1) and 1 DNA replication gene, topoisomerase IIalpha (TOP2A). Temporal changes in selected mRNA levels were examined by RT-PCR over 11 time points from 15 min to 24 h postdosing. CYP1A1 exhibited a 38-fold decrease by 4 h, which rebounded to a 39-fold increase by 20 h. GCLM and TXNRD1 exhibited 13- and 9-fold increases, respectively at 24 h. Etomoxir-induced oxidative stress and impaired mitochondrial energy metabolism were confirmed by a significant decrease in reduced glutathione (GSH), reduced/oxidized glutathione ratio (GSH/GSSG), mitochondrial membrane potential (MMP), and ATP levels, and by concurrent increase in oxidized glutathione (GSSG) and superoxide generation. This is the first report of oxidative stress caused by etomoxir.


Subject(s)
Epoxy Compounds/toxicity , Gene Expression Regulation , Glutathione/analogs & derivatives , Hepatocytes/drug effects , Hypoglycemic Agents/toxicity , Oxidative Stress/genetics , Carcinoma, Hepatocellular , Cell Survival/drug effects , DNA/analysis , Dose-Response Relationship, Drug , Enzymes/genetics , Enzymes/metabolism , Glutathione/genetics , Glutathione/metabolism , Hepatocytes/metabolism , Hepatocytes/pathology , Humans , Oligonucleotide Array Sequence Analysis , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Thioredoxin Reductase 1 , Thioredoxin-Disulfide Reductase/genetics , Thioredoxin-Disulfide Reductase/metabolism , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...