Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Comp Med ; 71(4): 309-317, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34187631

ABSTRACT

Melatonin, the circadian nighttime neurohormone, and eicosapentaenoic acid (EPA) and docosahexaenoic acids (DHA), which are omega-3 fatty acids (FA) found in high concentrations in fish oil (FO) and plants, abrogate the oncogenic effects of linoleic acid (LA), an omega-6 FA, on the growth of rodent tumors and human breast, prostate, and head and neck squamous cell carcinoma (HNSCC) xenografts in vivo. Here we determined and compared the long-term effects of these inhibitory agents on tumor regression and LA uptake and metabolism to the mitogenic agent 13-[S]-hydroxyoctadecadienoic acid (13-[S]-HODE) in human prostate cancer 3 (PC3) and FaDu HNSCC xenografts in tumor-bearing male nude rats. Rats in this study were split into 3 groups and fed one of 2 diets: one diet containing 5% corn oil (CO, high LA), 5% CO oil and melatonin (2 µg/mL) or an alternative diet 5% FO (low LA). Rats whose diet contained melatonin had a faster rate of regression of PC3 prostate cancer xenografts than those receiving the FO diet, while both in the melatonin and FO groups induced the same rate of regression of HNSCC xenografts. The results also demonstrated that dietary intake of melatonin or FO significantly inhibited tumor LA uptake, cAMP content, 13-[S]-HODE formation, [³H]-thymidine incorporation into tumor DNA, and tumor DNA content. Therefore, long-term ingestion of either melatonin or FO can induce regression of PC3 prostate and HNSCC xenografts via a mechanism involving the suppression of LA uptake and metabolism by the tumor cells.


Subject(s)
Melatonin , Neoplasms , Animals , Diet , Heterografts , Humans , Linoleic Acid , Linoleic Acids , Male , Rats , Rats, Nude
2.
Pac Symp Biocomput ; : 339-350, 2012.
Article in English | MEDLINE | ID: mdl-22174289

ABSTRACT

The decreasing cost of genotyping and genome sequencing has ushered in an era of genomic personalized medicine. More than 100,000 individuals have been genotyped by direct-to-consumer genetic testing services, which offer a glimpse into the interpretation and exploration of a personal genome. However, these interpretations, which require extensive manual curation, are subject to the preferences of the company and are not customizable by the individual. Academic institutions teaching personalized medicine, as well as genetic hobbyists, may prefer to customize their analysis and have full control over the content and method of interpretation. We present the Interpretome, a system for private genome interpretation, which contains all genotype information in client-side interpretation scripts, supported by server-side databases. We provide state-of-the-art analyses for teaching clinical implications of personal genomics, including disease risk assessment and pharmacogenomics. Additionally, we have implemented client-side algorithms for ancestry inference, demonstrating the power of these methods without excessive computation. Finally, the modular nature of the system allows for plugin capabilities for custom analyses. This system will allow for personal genome exploration without compromising privacy, facilitating hands-on courses in genomics and personalized medicine.


Subject(s)
Genomics/statistics & numerical data , Precision Medicine/statistics & numerical data , Software , Algorithms , Computational Biology , Genetics, Population/statistics & numerical data , Genome, Human , Genotype , Humans , Pharmacogenetics/statistics & numerical data , Polymorphism, Single Nucleotide , Racial Groups/genetics , Search Engine , User-Computer Interface
3.
Comp Med ; 60(5): 348-56, 2010 Oct.
Article in English | MEDLINE | ID: mdl-21262119

ABSTRACT

Dark-phase light contamination can significantly disrupt chronobiologic rhythms, thereby potentially altering the endocrine physiology and metabolism of experimental animals and influencing the outcome of scientific investigations. We sought to determine whether exposure to low-level light contamination during the dark phase influenced the normally entrained circadian rhythms of various substances in plasma. Male Sprague-Dawley rats (n = 6 per group) were housed in photobiologic light-exposure chambers configured to create 1) a 12:12-h light:dark cycle without dark-phase light contamination (control condition; 123 µW/cm(2), lights on at 0600), 2) experimental exposure to a low level of light during the 12-h dark phase (with 0.02, 0.05, 0.06, or 0.08 µW/cm(2) light at night), or 3) constant bright light (123 µW/cm(2)). Dietary and water intakes were recorded daily. After 2 wk, rats underwent 6 low-volume blood draws at 4-h intervals (beginning at 0400) during both the light and dark phases. Circadian rhythms in dietary and water intake and levels of plasma total fatty acids and lipid fractions remained entrained during exposure to either control conditions or low-intensity light during the dark phase. However, these patterns were disrupted in rats exposed to constant bright light. Circadian patterns of plasma melatonin, glucose, lactic acid, and corticosterone were maintained in all rats except those exposed to constant bright light or the highest level of light during the dark phase. Therefore even minimal light contamination during the dark phase can disrupt normal circadian rhythms of endocrine metabolism and physiology and may alter the outcome of scientific investigations.


Subject(s)
Circadian Rhythm/radiation effects , Light , Photoperiod , Rats/physiology , Animals , Blood Glucose/metabolism , Corticosterone/blood , Endocrine System/radiation effects , Fatty Acids/blood , Housing, Animal , Laboratory Animal Science , Lactic Acid/blood , Male , Melatonin/blood , Rats/metabolism , Rats, Sprague-Dawley
4.
J Pineal Res ; 47(1): 32-42, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19486272

ABSTRACT

Melatonin provides a circadian signal that regulates linoleic acid (LA)-dependent tumor growth. In rodent and human cancer xenografts of epithelial origin in vivo, melatonin suppresses the growth-stimulatory effects of linoleic acid (LA) by blocking its uptake and metabolism to the mitogenic agent, 13-hydroxyoctadecadienoic acid (13-HODE). This study tested the hypothesis that both acute and long-term inhibitory effects of melatonin are exerted on LA transport and metabolism, and growth activity in tissue-isolated human leiomyosarcoma (LMS), a rare, mesenchymally-derived smooth muscle tissue sarcoma, via melatonin receptor-mediated inhibition of signal transduction activity. Melatonin added to the drinking water of female nude rats bearing tissue-isolated LMS xenografts and fed a 5% corn oil (CO) diet caused the rapid regression of these tumors (0.17 +/- 0.02 g/day) versus control xenografts that continued to grow at 0.22 +/- 0.03 g/day over a 10-day period. LMS perfused in situ for 150 min with arterial donor blood augmented with physiological nocturnal levels of melatonin showed a dose-dependent suppression of tumor cAMP production, LA uptake, 13-HODE release, extracellular signal-regulated kinase (ERK 1/2), mitogen activated protein kinase (MEK), Akt activation, and [(3)H]thymidine incorporation into DNA and DNA content. The inhibitory effects of melatonin were reversible and preventable with either melatonin receptor antagonist S20928, pertussis toxin, forskolin, or 8-Br-cAMP. These results demonstrate that, as observed in epithelially-derived cancers, a nocturnal physiological melatonin concentration acutely suppress the proliferative activity of mesenchymal human LMS xenografts while long-term treatment of established tumors with a pharmacological dose of melatonin induced tumor regression via a melatonin receptor-mediated signal transduction mechanism involving the inhibition of tumor LA uptake and metabolism.


Subject(s)
Antineoplastic Agents/pharmacology , Leiomyosarcoma/drug therapy , Linoleic Acid/metabolism , Melatonin/pharmacology , Receptors, Melatonin/metabolism , Animals , Cyclic AMP/metabolism , Fatty Acids/metabolism , Female , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Leiomyosarcoma/metabolism , Leiomyosarcoma/pathology , Linoleic Acid/antagonists & inhibitors , Mice , Mice, Inbred BALB C , Mice, Nude , Rats , Rats, Nude , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
5.
Comp Med ; 57(4): 377-82, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17803052

ABSTRACT

Melatonin and eicosapentaenoic and 10t,12c-conjugated linoleic acids suppress the growth-stimulating effects of linoleic acid (LA) and its metabolism to the mitogenic agent 13-(S)-hydroxyoctadecadienoic acid (13-(S)-HODE) in established rodent tumors and human cancer xenografts. Here we compared the effects of these 3 inhibitory agents on growth and LA uptake and metabolism in human FaDu squamous cell carcinoma xenografts perfused in situ in male nude rats. Results demonstrated that these agents caused rapid inhibition of LA uptake, tumor cAMP content, 13-(S)-HODE formation, extracellular signal-regulated kinase p44/ p42 (ERK 1/2) activity, mitogen-activated protein kinase kinase (MEK) activity, and [3H]thymidine incorporation into tumor DNA. Melatonin's inhibitory effects were reversible with either the melatonin receptor antagonist S20928, pertussis toxin, forskolin, or 8-bromoadenosine-cAMP, suggesting that its growth-inhibitory effect occurs in vivo via a receptor-mediated, pertussis-toxin-sensitive pathway.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Squamous Cell/drug therapy , Eicosapentaenoic Acid/pharmacology , Linoleic Acids, Conjugated/pharmacology , Linoleic Acids/metabolism , Melatonin/pharmacology , Animals , Biological Transport/drug effects , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Cell Proliferation/drug effects , Humans , Male , Rats , Rats, Inbred BUF , Rats, Nude , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...