Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Biol ; 279(3): 513-27, 1998 Jun 12.
Article in English | MEDLINE | ID: mdl-9641975

ABSTRACT

Escherichia coli phage lambda integrase (Int) is a 40 kilodalton, 356 amino acid residue protein, which belongs to the lambda Int family of site-specific recombinases. The amino-terminal domain (residues 1 to 64) of Int binds to "arm-type" DNA sites, distant from the sites of DNA cleavage. The carboxy-terminal fragment, termed C65 (residues 65 to 356), binds "core-type" DNA sites and catalyzes cleavage and ligation at these sites. It has been further divided into two smaller domains, encompassing residues 65 to 169 and 170 to 356, respectively. The latter has been characterized and its crystal structure has been determined. Although this domain catalyzes the cleavage and rejoining of DNA strands it, unexpectedly, does not form electrophorectically stable complexes with core-type DNA. Here we have investigated the critical features of lambda Int binding to core-type DNA sites; especially, the role of the central 65 to 169 domain. To eliminate the complexities arising from lambda Int's heterobivalency we studied Int C65, which was shown to be as competent as Int, in binding to, and cleaving, core-type sites. Zero-length UV crosslinking was used to show that Ala125 and Ala126 make close contact with bases in the core-type DNA. Modification by pyridoxal 5'-phosphate was used to identify Lys103 at the protein-DNA interface. Since both of the identified loci are in the central domain, it was cloned and purified and found to bind to core-type DNA autonomously and specifically. The synergistic roles of the catalytic and the central, or core-binding (CB), domains in the interaction with core-type DNA are discussed for (Int and related DNA recombinases.


Subject(s)
Bacteriophage lambda/enzymology , Coliphages/enzymology , DNA/metabolism , Integrases/chemistry , Binding Sites/genetics , Cross-Linking Reagents/metabolism , DNA-Binding Proteins/chemistry , Kinetics , Lysine/metabolism , Metalloendopeptidases/metabolism , Oligodeoxyribonucleotides/metabolism , Peptide Fragments/chemistry , Pyridoxal Phosphate/metabolism , Ultraviolet Rays
2.
Nucleic Acids Res ; 26(2): 391-406, 1998 Jan 15.
Article in English | MEDLINE | ID: mdl-9421491

ABSTRACT

Alignments of 105 site-specific recombinases belonging to the Int family of proteins identified extended areas of similarity and three types of structural differences. In addition to the previously recognized conservation of the tetrad R-H-R-Y, located in boxes I and II, several newly identified sequence patches include charged amino acids that are highly conserved and a specific pattern of buried residues contributing to the overall protein fold. With some notable exceptions, unconserved regions correspond to loops in the crystal structures of the catalytic domains of lambda Int (Int c170) and HP1 Int (HPC) and of the recombinases XerD and Cre. Two structured regions also harbor some pronounced differences. The first comprises beta-sheets 4 and 5, alpha-helix D and the adjacent loop connecting it to alpha-helix E: two Ints of phages infecting thermophilic bacteria are missing this region altogether; the crystal structures of HPC, XerD and Cre reveal a lack of beta-sheets 4 and 5; Cre displays two additional beta-sheets following alpha-helix D; five recombinases carry large insertions. The second involves the catalytic tyrosine and is seen in a comparison of the four crystal structures. The yeast recombinases can theoretically be fitted to the Int fold, but the overall differences, involving changes in spacing as well as in motif structure, are more substantial than seen in most other proteins. The phenotypes of mutations compiled from several proteins are correlated with the available structural information and structure-function relationships are discussed. In addition, a few prokaryotic and eukaryotic enzymes with partial homology with the Int family of recombinases may be distantly related, either through divergent or convergent evolution. These include a restriction enzyme and a subgroup of eukaryotic RNA helicases (D-E-A-D proteins).


Subject(s)
DNA Nucleotidyltransferases/chemistry , Integrases/chemistry , Amino Acid Sequence , Conserved Sequence , DNA Mutational Analysis , DNA Nucleotidyltransferases/metabolism , Humans , Infant, Newborn , Integrases/metabolism , Models, Molecular , Molecular Sequence Data , Molecular Structure , Recombination, Genetic , Sequence Alignment , Structure-Activity Relationship
3.
Proc Natl Acad Sci U S A ; 94(12): 6104-9, 1997 Jun 10.
Article in English | MEDLINE | ID: mdl-9177177

ABSTRACT

The Escherichia coli phage lambda integrase protein (Int) belongs to the large Int family of site-specific recombinases. It is a heterobivalent DNA binding protein that makes use of a high energy covalent phosphotyrosine intermediate to catalyze integrative and excisive recombination at specific chromosomal sites (att sites). A 293-amino acid carboxy-terminal fragment of Int (C65) has been cloned, characterized, and used to further dissect the protein. From this we have cloned and characterized a 188-amino acid, protease-resistant, carboxy-terminal fragment (C170) that we believe is the minimal catalytically competent domain of Int. C170 has topoisomerase activity and converts att suicide substrates to the covalent phosphotyrosine complexes characteristic of recombination intermediates. However, it does not show efficient binding to att site DNA in a native gel shift assay. We propose that lambda Int consists of three functional and structural domains: residues 1-64 specify recognition of "arm-type" DNA sequences distant from the region of strand exchange; residues 65-169 contribute to specific recognition of "core-type" sequences at the sites of strand exchange and possibly to protein-protein interactions; and residues 170-356 carry out the chemistry of DNA cleavage and ligation. The finding that the active site nucleophile Tyr-342 is in a uniquely protease-sensitive region complements and reinforces the recently solved C170 crystal structure, which places Tyr-342 at the center of a 17-amino acid flexible loop. It is proposed that C170 is likely to represent a generic Int family domain that thus affords a specific route to studying the chemistry of DNA cleavage and ligation in these recombinases.


Subject(s)
Bacteriophage lambda/enzymology , DNA Nucleotidyltransferases/chemistry , DNA Nucleotidyltransferases/metabolism , Integrases/chemistry , Integrases/metabolism , Amino Acid Sequence , Binding Sites , Catalysis , Crystallography, X-Ray , Endopeptidases , Escherichia coli/virology , Kinetics , Molecular Sequence Data , Mutagenesis, Site-Directed , Peptide Fragments/chemistry , Point Mutation , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Recombinases , Tyrosine
4.
J Biol Chem ; 271(47): 29599-604, 1996 Nov 22.
Article in English | MEDLINE | ID: mdl-8939889

ABSTRACT

Integrase (Int) of bacteriophage lambda is a heterobivalent DNA-binding protein and a type I topoisomerase. Upon modification with N-ethylmaleimide (NEM), a sulfhydryl-directed reagent, Int loses its capacity to bind "arm-type" DNA sequences and, consequently, to carry out recombination; however, its ability to bind "core-type" sequences and its topoisomerase activity are unaffected. In this report, the NEM-sensitive site was identified by modifying Int with [14C]NEM. Following cleavage by formic acid, which cleaves Asp-Pro bonds, and fractionation on a Fractogel HW-50 (F) sizing column, the fragment containing the primary site of [14C]NEM incorporation was subjected to amino acid sequencing. The results indicate that the primary site of [14C]NEM incorporation is in the peptide-spanning amino acid residues 1-28, which contains a cysteine at position 25. To confirm that Cys-25 is the target of NEM reactivity, site-directed mutagenesis was used to change this cysteine to alanine or serine. The mutant protein is not chemically modified by NEM and shows no loss of activity after NEM treatment. The fact that C25A and C25S both retain full recombination activity indicates that the SH group of Cys-25 does not provide any critical contacts, either with arm-type DNA or with other parts of the Int protein to form the arm-type recognition pocket. The loss of arm-type DNA binding and the concomitant loss of recombination function as a result of NEM modification must be due to the presence of the maleimide moiety and not due to loss of a critical cysteine contact.


Subject(s)
Bacteriophage lambda/enzymology , Ethylmaleimide/pharmacology , Integrase Inhibitors/pharmacology , Integrases/metabolism , Amino Acid Sequence , Cysteine/metabolism , Integrases/genetics , Molecular Sequence Data , Mutagenesis, Site-Directed
5.
EMBO J ; 13(18): 4421-30, 1994 Sep 15.
Article in English | MEDLINE | ID: mdl-7925285

ABSTRACT

In the Int family of site-specific recombinases, DNA cleavage is accomplished by nucleophilic attack on the activated scissile phosphodiester bond by a specific tyrosine residue. It has been proposed that this tyrosine is contributed by a protomer bound to a site other than the one being cleaved ('trans' cleavage). To test this hypothesis, the difference in DNA binding specificity between closely related integrases (Ints) from phages lambda and HK022 was exploited to direct wild type Ints and cleavage- or activation-defective mutants to particular sites on bispecific substrates. Analysis of Int cleavage at individual sites strongly indicates that DNA cleavage is catalyzed by the Int bound to the cleaved site ('cis' cleavage). This conclusion contrasts with those from previous experiments with two members of the Int family, FLP and lambda Int, that supported the hypothesis of trans cleavage. We suggest explanations for this difference and discuss the implications of the surprising finding that Int-family recombinases appear capable of both cis and trans mechanisms of DNA cleavage.


Subject(s)
Bacteriophage lambda/enzymology , DNA Nucleotidyltransferases/metabolism , DNA/metabolism , DNA Replication , Integrases , Models, Genetic , Nucleic Acid Conformation , Protein Binding , Recombination, Genetic , Substrate Specificity , Virus Integration
6.
Biochemistry ; 30(26): 6436-43, 1991 Jul 02.
Article in English | MEDLINE | ID: mdl-1711370

ABSTRACT

We have labeled the primer binding domain of murine leukemia virus reverse transcriptase (MuLV RT) by covalently cross-linking 5' end labeled d(T)8 to MuLV RT, using ultraviolet light energy. The specificity and the functional significance of the primer cross-linking reaction were demonstrated by the fact that (i) other oligomeric primers, tRNAs, and also template-primers readily compete with radiolabeled d(T)8 for the cross-linking reaction, (ii) under similar conditions, the competing primers and template-primer also inhibit the DNA polymerase activity of MuLV RT to a similar extent, (iii) substrate deoxynucleotides have no effect, and (iv) the reaction is sensitive to high ionic strength. In order to identify the primer binding domains/sites in MuLV RT; tryptic digests prepared from the covalently cross-linked MuLV RT and [32P]d(T)8 complexes were resolved on C-18 columns by reverse-phase HPLC. Three distinct radiolabeled peptides were found to contain the majority of the bound primer. Of these, peptide I contained approximately 65% radioactivity, while the remainder was associated with peptides II and III. Amino acid composition and sequence analyses of the individual peptides revealed that peptide I spans amino acid residues 72-80 in the primary amino acid sequence of MuLV RT and is located in the polymerase domain. The primer cross-linking site appears to be at or near Pro-76. Peptides II and III span amino acid residues 602-609 and 615-622, respectively, and are located in the RNase H domain. The probable cross-linking sites in peptides II and III are suggested to be at or near Leu-604 and Leu-618, respectively.


Subject(s)
Affinity Labels/metabolism , Moloney murine leukemia virus/enzymology , RNA-Directed DNA Polymerase/metabolism , Amino Acid Sequence , Amino Acids/analysis , Avian Myeloblastosis Virus/enzymology , Binding Sites , Chromatography, High Pressure Liquid , Cloning, Molecular , Kinetics , Molecular Sequence Data , Oligodeoxyribonucleotides/metabolism , Peptide Fragments/isolation & purification , Recombinant Proteins/metabolism , Templates, Genetic , Trypsin , Ultraviolet Rays
7.
J Biol Chem ; 264(15): 8746-52, 1989 May 25.
Article in English | MEDLINE | ID: mdl-2470747

ABSTRACT

Human immunodeficiency virus reverse transcriptase (HIV-RT) exhibits a strong sensitivity to pyridoxal 5'-phosphate (PLP), a substrate-binding site directed reagent for DNA polymerases (Modak, M. J. (1976) Biochemistry 15, 3620-3626). Treatment of HIV-RT with PLP followed by sodium borohydride reduction of the enzyme-PLP adduct results in irreversible inactivation of polymerase activity while RNase H activity associated with HIV-RT is minimally affected. Kinetic studies indicate that the PLP inhibition is complex. Yet one of the sites of PLP action appears to be involved in the process of dNTP binding as judged by (a) competitive mode of inhibition and (b) blockage of PLP into enzyme protein by the addition of substrate dNTP. Furthermore, this site is the only PLP reactive site which is accessible to borohydride reduction. Comparative tryptic peptide mapping of enzyme treated with PLP under a variety of conditions permitted the identification of a PLP reactive site containing peptide. Furthermore, reactivity of this site was also blocked by inclusion of substrate dNTP and appropriate template-primer. The amino acid composition and sequence analysis of this peptide showed that a lysine residue present at position 263 in the primary amino acid sequence of HIV-RT is the site of PLP reactivity. We therefore conclude that lysine 263 serves as an important part of the dNTP-binding domain in HIV-RT.


Subject(s)
HIV/enzymology , Lysine , Pyridoxal Phosphate/metabolism , RNA-Directed DNA Polymerase/metabolism , Amino Acid Sequence , Amino Acids/analysis , Binding Sites , Endoribonucleases/metabolism , Escherichia coli/genetics , Kinetics , Molecular Sequence Data , Molecular Weight , Peptide Fragments/analysis , RNA-Directed DNA Polymerase/genetics , RNA-Directed DNA Polymerase/isolation & purification , Ribonuclease H
SELECTION OF CITATIONS
SEARCH DETAIL
...