Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Rev Med Pharmacol Sci ; 25(22): 7162-7184, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34859882

ABSTRACT

The last two decades have witnessed the emergence of three deadly coronaviruses (CoVs) in humans: severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). There are still no reliable and efficient therapeutics to manage the devastating consequences of these CoVs. Of these, SARS-CoV-2, the cause of the currently ongoing coronavirus disease 2019 (COVID-19) pandemic, has posed great global health concerns. The COVID-19 pandemic has resulted in an unprecedented crisis with devastating socio-economic and health impacts worldwide. This highlights the fact that CoVs continue to evolve and have the genetic flexibility to become highly pathogenic in humans and other mammals. SARS-CoV-2 carries a high genetic homology to the previously identified CoV (SARS-CoV), and the immunological and pathogenic characteristics of SARS-CoV-2, SARS-CoV, and MERS contain key similarities and differences that can guide therapy and management. This review presents salient and updated information on comparative pathology, molecular pathogenicity, immunological features, and genetic characterization of SARS-CoV, MERS-CoV, and SARS-CoV-2; this can help in the design of more effective vaccines and therapeutics for countering these pathogenic CoVs.


Subject(s)
COVID-19/virology , Middle East Respiratory Syndrome Coronavirus/genetics , Pathology, Molecular/methods , SARS-CoV-2/genetics , Severe acute respiratory syndrome-related coronavirus/genetics , Animals , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/transmission , Female , Global Health/economics , Humans , Male , Mammals , Middle East Respiratory Syndrome Coronavirus/immunology , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Severe acute respiratory syndrome-related coronavirus/immunology , Severe acute respiratory syndrome-related coronavirus/pathogenicity , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Virulence
2.
Sci Adv ; 7(38): eabf4514, 2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34524856

ABSTRACT

The KwaZulu-Natal sardine run, popularly known as the "greatest shoal on Earth," is a mass migration of South African sardines from their temperate core range into the subtropical Indian Ocean. It has been suggested that this represents the spawning migration of a distinct subtropical stock. Using genomic and transcriptomic data from sardines collected around the South African coast, we identified two stocks, one cool temperate (Atlantic) and the other warm temperate (Indian Ocean). Unexpectedly, we found that sardines participating in the sardine run are primarily of Atlantic origin and thus prefer colder water. These sardines separate from the warm-temperate stock and move into temporarily favorable Indian Ocean habitat during brief cold-water upwelling periods. Once the upwelling ends, they find themselves trapped in physiologically challenging subtropical habitat and subject to intense predation pressure. This makes the sardine run a rare example of a mass migration that has no apparent fitness benefits.

SELECTION OF CITATIONS
SEARCH DETAIL
...