Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cureus ; 15(10): e47683, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37899905

ABSTRACT

Introduction The overlap in clinical presentation between COVID-19 and dengue poses challenges for diagnosis in co-endemic regions. Furthermore, there have been reports of antibody cross-reactivity between SARS-CoV-2 and dengue. Our research aims to evaluate SARS-CoV-2 antigens for serological testing while reducing the possibility of cross-reactivity with anti-dengue antibodies. Method Two hundred and ten serum samples were collected from 179 patients and divided into four panels. Panels 1 and 2 consisted of COVID-19-negative healthy donors (n=81) and pre-pandemic dengue patients (n=50), respectively. Alternatively, Panel 3 (n=19) was composed of reverse transcription-quantitative polymerase chain reaction (RT-qPCR)-positive samples collected within two weeks of COVID-19 symptom onset, while Panel 4 (n=60) was composed of positive samples collected after two weeks of symptom onset. Previously developed and characterized in-house SARS-CoV-2 spike-1 (S1), receptor binding domain (RBD), and nucleocapsid (N) immunoglobin G (IgG)-enzyme-linked immunosorbent assay (ELISA) assays were used for the study. Results Six dengue-positive sera cross-reacted with the RBD of SARS-CoV-2. However, only one dengue-positive sera cross-reacted with the S1 and N proteins of SARS-CoV-2. Co-immobilization of S1 and RBD in different ratios revealed an 80:20 (S1:RBD) ratio as optimal for achieving an overall 96.2% sensitivity with the least cross-reaction to anti-dengue antibodies. Conclusion Our findings indicated that SARS-CoV-2 RBD-based immunoassays present more cross-reactivity with anti-dengue antibodies than S1 and N proteins. Furthermore, co-immobilization of S1 and RBD reduces the cross-reactivity with anti-dengue antibodies compared to RBD, thereby increasing the immunoassay specificity without affecting overall sensitivity for the dengue-endemic areas.

2.
Life (Basel) ; 12(5)2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35629317

ABSTRACT

With the progression of the COVID-19 pandemic, new technologies are being implemented for more rapid, scalable, and sensitive diagnostics. The implementation of microfluidic techniques and their amalgamation with different detection techniques has led to innovative diagnostics kits to detect SARS-CoV-2 antibodies, antigens, and nucleic acids. In this review, we explore the different microfluidic-based diagnostics kits and how their amalgamation with the various detection techniques has spearheaded their availability throughout the world. Three other online databases, PubMed, ScienceDirect, and Google Scholar, were referred for articles. One thousand one hundred sixty-four articles were determined with the search algorithm of microfluidics followed by diagnostics and SARS-CoV-2. We found that most of the materials used to produce microfluidics devices were the polymer materials such as PDMS, PMMA, and others. Centrifugal force is the most commonly used fluid manipulation technique, followed by electrochemical pumping, capillary action, and isotachophoresis. The implementation of the detection technique varied. In the case of antibody detection, spectrometer-based detection was most common, followed by fluorescence-based as well as colorimetry-based. In contrast, antigen detection implemented electrochemical-based detection followed by fluorescence-based detection, and spectrometer-based detection were most common. Finally, nucleic acid detection exclusively implements fluorescence-based detection with a few colorimetry-based detections. It has been further observed that the sensitivity and specificity of most devices varied with implementing the detection-based technique alongside the fluid manipulation technique. Most microfluidics devices are simple and incorporate the detection-based system within the device. This simplifies the deployment of such devices in a wide range of environments. They can play a significant role in increasing the rate of infection detection and facilitating better health services.

3.
Vaccines (Basel) ; 9(12)2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34960133

ABSTRACT

COVID-19 vaccines are indispensable, with the number of cases and mortality still rising, and currently no medicines are routinely available for reducing morbidity and mortality, apart from dexamethasone, although others are being trialed and launched. To date, only a limited number of vaccines have been given emergency use authorization by the US Food and Drug Administration and the European Medicines Agency. There is a need to systematically review the existing vaccine candidates and investigate their safety, efficacy, immunogenicity, unwanted events, and limitations. The review was undertaken by searching online databases, i.e., Google Scholar, PubMed, and ScienceDirect, with finally 59 studies selected. Our findings showed several types of vaccine candidates with different strategies against SARS-CoV-2, including inactivated, mRNA-based, recombinant, and nanoparticle-based vaccines, are being developed and launched. We have compared these vaccines in terms of their efficacy, side effects, and seroconversion based on data reported in the literature. We found mRNA vaccines appeared to have better efficacy, and inactivated ones had fewer side effects and similar seroconversion in all types of vaccines. Overall, global variant surveillance and systematic tweaking of vaccines, coupled with the evaluation and administering vaccines with the same or different technology in successive doses along with homologous and heterologous prime-booster strategy, have become essential to impede the pandemic. Their effectiveness appreciably outweighs any concerns with any adverse events.

SELECTION OF CITATIONS
SEARCH DETAIL
...