Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Mol Biol (Mosk) ; 55(1): 20-41, 2021.
Article in Russian | MEDLINE | ID: mdl-33566023

ABSTRACT

Protein synthesis on ribosomes is considered the main process in cell life. Regulation of ribosomal protein gene expression plays an important role in the balanced synthesis of proteins and RNA in ribosomal biogenesis. This review is focused on some features of autoregulation of ribosomal protein synthesis in prokaryotes. Inhibition of the synthesis of ribosomal proteins encoded by 12 operons by mechanisms of competition , "entrapment", and retroregulation are discussed. Examples of regulation of protein synthesis by individual ribosomal proteins and their complexes are presented.


Subject(s)
Escherichia coli , Protein Biosynthesis , Escherichia coli/genetics , Operon , RNA, Ribosomal/metabolism , Ribosomal Proteins/genetics , Ribosomes/genetics , Ribosomes/metabolism
2.
Biochemistry (Mosc) ; 84(Suppl 1): S193-S205, 2019 Jan.
Article in English | MEDLINE | ID: mdl-31213202

ABSTRACT

Cytokines of the IL-17 family play a key role in the host organism defense against bacterial and fungal infections. At the same time, upregulated synthesis of IL-17 cytokines is associated with immunoinflammatory and autoimmune diseases such as psoriasis, rheumatoid arthritis, systemic lupus erythematosus, and others. The members of this family are important therapeutic targets in the treatment of various human chronic inflammatory disorders. Elucidation of signaling pathways involving IL-17 family proteins and analysis of the structure of cytokine complexes with specific antibodies, inhibitors, and receptors are essential for the development of new drugs for the therapy of immunoinflammatory rheumatic diseases.


Subject(s)
Autoimmune Diseases/immunology , Interleukin-17 , Molecular Targeted Therapy , T-Lymphocytes/immunology , Antibodies, Monoclonal/pharmacology , Humans , Interleukin-17/antagonists & inhibitors , Interleukin-17/chemistry , Interleukin-17/physiology , Protein Structure, Quaternary , Signal Transduction
3.
Appl Microbiol Biotechnol ; 102(23): 10043-10053, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30229324

ABSTRACT

The Gram-negative bacterium Lysobacter sp. XL1 secretes into the extracellular space five bacteriolytic enzymes that lyse the cell walls of competing microorganisms. Of special interest are homologous lytic proteases L1 and L5. This work found protein L5 to possess Gly-Gly endopeptidase and N-acetylmuramoyl-L-Ala amidase activities with respect to staphylococcal peptidoglycan. Protein L5 was found to be capable of aggregating into amyloid-like fibril structures. The crystal structure of protein L5 was determined at a 1.60-Å resolution. Protein L5 was shown to have a rather high structural identity with bacteriolytic protease L1 of Lysobacter sp. XL1 and α-lytic protease of Lysobacter enzymogenes at a rather low identity of their amino acid sequences. Still, the structure of protein L5 was revealed to have regions that differed from their equivalents in the homologs. The revealed structural distinctions in L5 are suggested to be of importance in exhibiting its unique properties.


Subject(s)
Bacterial Proteins/chemistry , Bacteriolysis , Lysobacter/enzymology , Serine Endopeptidases/chemistry , Amino Acid Sequence , Microscopy, Electron, Transmission , Peptidoglycan/chemistry , Protein Conformation , Staphylococcus aureus , X-Ray Diffraction
4.
Mol Biol (Mosk) ; 52(1): 29-35, 2018.
Article in Russian | MEDLINE | ID: mdl-29512633

ABSTRACT

Laccase belongs to the family of copper-containing oxidases. A study was made of the mechanism that sustains the incorporation of copper ions into the T2/T3 centers of recombinant two-domain laccase Streptomyces griseoflavus Ac-993. The occupancy of the T3 center by copper ions was found to increase with an increasing copper content in the culture medium and after dialysis of the protein preparation against a copper sulfate-containing buffer. The T2 center was filled only when overproducer strain cells were grown at a higher copper concentration in the medium. Two-domain laccases were assumed to possess a channel that serves to deliver copper ions to the T3 center during the formation of the three-dimensional laccase conformation and dialysis of the protein preparation. A narrower channel leads to the T2 center in two-domain laccases compared with three-domain ones, rendering the center less accessible for copper atoms. The incorporation of copper ions into the T2 center of two-domain laccases is likely to occur in the course of their biosynthesis or the formation of a functional trimer.


Subject(s)
Bacterial Proteins/chemistry , Copper/chemistry , Laccase/chemistry , Streptomyces/chemistry , Crystallography, X-Ray , Ions
5.
Mol Biol (Mosk) ; 52(1): 98-105, 2018.
Article in Russian | MEDLINE | ID: mdl-29512641

ABSTRACT

The conserved two-domain ribosomal protein (r-protein) L1 is a structural part of the L1 stalk of the large ribosomal subunit and regulates the translation of the operon that comprises its own gene. The regulatory properties of the bacterial r-protein L1 have only been studied in detail for Escherichia coli; however, there were no such studies for other bacteria, in particular, Thermus thermophilus and Thermotoga maritima, which are more evolutionarily ancient. It is known that domain I of the r-protein L1 might have regulatory properties of the whole protein. The aim of this study was to identify regulatory sites on the mRNA of T. thermophilus and T. maritima that interact with r-proteins L1, as well as with their domains I from the same organisms. An analysis of the mRNA of the L11 operon T. thermophilus showed the presence of one potential binding site of the L1 r-protein, two such regions were found also in the mRNA sequence of the L11 operon of T. maritima. The dissociation constants for the L1 proteins from T. thermophilus and T. maritima and their domains I with mRNA fragments from the same organisms that contain the supposed L1-binding sites were determined by surface plasmon resonance. It has been shown that the ribosomal proteins L1 as their domains I bind specific fragments of mRNA from the same organisms that may suggest regulatory activity of the L1 protein in the T. thermophilus and T. maritima and conservatism of the principles of L1-RNA interactions.


Subject(s)
Bacterial Proteins/chemistry , Ribosomal Proteins/chemistry , Thermotoga maritima/chemistry , Thermus thermophilus/chemistry , Binding Sites , RNA, Messenger/chemistry
6.
Mol Biol (Mosk) ; 52(1): 106-111, 2018.
Article in Russian | MEDLINE | ID: mdl-29512642

ABSTRACT

The L1 protuberance of the ribosome includes two domain ribosomal protein L1 and three helices of 23S rRNA (H76, H77, and H78) with interconnecting loops A and B. Helix 78 consists of two parts, i.e., H78a and H78b. A comparison of the available structural data of L1-RNA complexes with the obtained kinetic data made it possible to determine the influence of the nonconserved regions of Thermus thermophilus L1-protuberance on the mutual affinity of the L1 protein and 23S rRNA. It has been shown that the N-terminal helix of the protein and 78b helix of 23S rRNA are essential for the formation of an additional intermolecular contact, which is separated in the protein from the main site of L1-rRNA interaction by a flexible connection. This results in a rise in the TthL1-rRNA affinity. At the same time, the elongation of the 76 helix has no effect on rRNA-protein binding.


Subject(s)
Bacterial Proteins/chemistry , RNA, Ribosomal, 23S/chemistry , Ribosomal Proteins/chemistry , Ribosomes/chemistry , Thermus thermophilus/chemistry , Kinetics , Nucleic Acid Conformation , Protein Binding
7.
Biochemistry (Mosc) ; 80(4): 441-8, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25869361

ABSTRACT

Bacterial Hfq proteins are structural homologs of archaeal and eukaryotic Sm/Lsm proteins, which are characterized by a 5-stranded ß-sheet and an N-terminal α-helix. Previously, it was shown that archaeal Lsm proteins (SmAP) could produce long fibrils spontaneously, in contrast to the Hfq from Escherichia coli that could form similar fibrils only after special treatment. The organization of these fibrils is significantly different, but the reason for the dissimilarity has not been found. In the present work, we studied the process of fibril formation by bacterial protein Hfq from Pseudomonas aeruginosa and archaeal protein SmAP from Methanococcus jannaschii. Both proteins have high homology with E. coli Hfq. We found that Hfq from P. aeruginosa could form fibrils after substitutions in the conserved Sm2 motif only. SmAP from M. jannaschii, like other archaeal Lsm proteins, form fibrils spontaneously. Despite differences in the fibril formation conditions, the architecture of both was similar to that described for E. coli Hfq. Therefore, universal nature of fibril architecture formed by Hfq proteins is suggested.


Subject(s)
Archaeal Proteins/chemistry , Host Factor 1 Protein/chemistry , Amino Acid Sequence , Archaeal Proteins/metabolism , Archaeal Proteins/ultrastructure , Host Factor 1 Protein/metabolism , Host Factor 1 Protein/ultrastructure , Methanocaldococcus , Molecular Sequence Data , Protein Conformation , Pseudomonas aeruginosa
8.
Biochimie ; 112: 151-9, 2015 May.
Article in English | MEDLINE | ID: mdl-25778839

ABSTRACT

Laccase (EC 1.10.3.2) is one of the most common copper-containing oxidases found in many organisms and catalyses oxidation of primarily phenolic compounds by oxygen. A recently found bacterial laccase whose molecule is formed by two domains - the so called two-domain laccase (2DLac) or small laccase - has unusual resistance to inhibitors and an alkaline optimum of activity. The causes of these properties, as well as the biological function of two-domain laccases, are poorly understood. We performed an enzymatic and structural characterization of 2DLac from Streptomyces viridochromogenes (SvSL). It was cloned and overproduced in Escherichia coli. Phenolic compounds were oxidized in the presence of the enzyme under alkaline but not acidic conditions. Conversely, nonphenolic compounds were oxidized at acidic but not alkaline pH. SvSL catalysed oxidation of nonphenolic compounds more efficiently than that of phenols. Moreover, this two-domain laccase displayed a cytochrome c oxidase activity and exhibited no ferroxidase activity. The enzyme was resistant to specific inhibitors of copper-containing oxidases, such as NaN3 and NaF. We succeeded in generating X-ray quality crystals and solved their structure to a resolution of 2.4 Å. SvSL is a homotrimer in its native state. Comparison of its structure with that of a three-domain laccase revealed differences in the second coordination sphere of the T2/T3 centre and solvent channels. The role of these differences in the resistance of the enzyme to inhibitors and the activity at alkaline pH is under discussion.


Subject(s)
Enzyme Inhibitors/chemistry , Laccase/chemistry , Nitrogen/chemistry , Sodium Fluoride/chemistry , Streptomyces/enzymology , Crystallography, X-Ray , Laccase/antagonists & inhibitors , Protein Structure, Tertiary , Recombinant Proteins
9.
Biochemistry (Mosc) ; 79(1): 69-76, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24512666

ABSTRACT

Ribosomal protein L4 is a regulator of protein synthesis in the Escherichia coli S10 operon, which contains genes of 11 ribosomal proteins. In this work, we have investigated regulatory functions of ribosomal protein L4 of the thermophilic archaea Methanococcus jannaschii. The S10-like operon from M. jannaschii encodes not 11, but only five ribosomal proteins (L3, L4, L23, L2, S19), and the first protein is L3 instead of S10. We have shown that MjaL4 and its mutant form lacking an elongated loop specifically inhibit expression of the first gene of the S10-like operon from the same organism in a coupled transcription-translation system in vitro. By deletion analysis, an L4-binding regulatory site has been found on MjaL3 mRNA, and a fragment of mRNA with length of 40 nucleotides has been prepared that is necessary and sufficient for the specific interaction with the MjaL4 protein.


Subject(s)
Methanocaldococcus/metabolism , Ribosomal Proteins/metabolism , Escherichia coli/metabolism , Kinetics , Nucleic Acid Conformation , RNA, Messenger/chemistry , RNA, Messenger/metabolism , Ribosomal Proteins/chemistry , Temperature
10.
Mol Biol (Mosk) ; 41(4): 688-96, 2007.
Article in Russian | MEDLINE | ID: mdl-17936990

ABSTRACT

Nine mutant forms of ribosomal proteins L1 from the bacterium Thermus thermophilus and the archaeon Methanococcus jannaschii were obtained. Their crystal structures were determined and analyzed. Earlier determined structure of S179C TthL1 was also thoroughly analyzed. Five from ten mutant proteins reveal essential changes of spatial structure caused by surface point mutation. It proves that for correct studies of biological processes by site-directed mutagenesis it is necessary to determine or at least to model spatial structures of mutant proteins. Detailed comparison of mutant L1 structures with that of corresponding wild type proteins reveals that side chain of a mutated amino acid residue tries to locate like the side chain of the original residue in the wild type protein. This observation helps to model the mutant structures.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Ribosomal Proteins/chemistry , Ribosomal Proteins/genetics , Amino Acid Sequence , Crystallography, X-Ray , Methanococcus/metabolism , Molecular Sequence Data , Mutation , Protein Conformation , Thermus thermophilus/metabolism
11.
Mol Biol (Mosk) ; 40(4): 650-7, 2006.
Article in Russian | MEDLINE | ID: mdl-16913224

ABSTRACT

Crystal structures of unbound protein L1 and of its complexes with ribosomal an messenger RNAs are analyzed. It is shown that the values of the apparent association rate constant for L1-RNA depend on conformation of unbound protein L1. It is suggested that L1 binds to rRNA with higher affinity than to mRNA because of additional interactions between domain II of L1 and the loop rRNA region, which is absent in mRNA.


Subject(s)
RNA, Messenger/metabolism , RNA, Ribosomal/metabolism , Ribosomal Proteins/metabolism , Archaeal Proteins/metabolism , Bacterial Proteins/metabolism , Models, Molecular , Protein Binding , Protein Biosynthesis , Protein Conformation , RNA, Archaeal/metabolism , RNA, Bacterial/metabolism
12.
Biochemistry (Mosc) ; 66(9): 948-53, 2001 Sep.
Article in English | MEDLINE | ID: mdl-11703173

ABSTRACT

The core ribosomal protein S8 binds to the central domain of 16S rRNA independently of other ribosomal proteins and is required for assembling the 30S subunit. It has been shown with E. coli ribosomes that a short rRNA fragment restricted by nucleotides 588-602 and 636-651 is sufficient for strong and specific protein S8 binding. In this work, we studied the complexes formed by ribosomal protein S8 from Thermus thermophilus and Methanococcus jannaschii with short rRNA fragments isolated from the same organisms. The dissociation constants of the complexes of protein S8 with rRNA fragments were determined. Based on the results of binding experiments, rRNA fragments of different length were designed and synthesized in preparative amounts in vitro using T7 RNA-polymerase. Stable S8-RNA complexes were crystallized. Crystals were obtained both for homologous bacterial and archaeal complexes and for hybrid complexes of archaeal protein with bacterial rRNA. Crystals of the complex of protein S8 from M. jannaschii with the 37-nucleotide rRNA fragment from the same organism suitable for X-ray analysis were obtained.


Subject(s)
RNA, Ribosomal/chemistry , RNA, Ribosomal/metabolism , Ribosomal Proteins/chemistry , Ribosomal Proteins/metabolism , Binding Sites , Crystallization , Magnesium/chemistry , Magnesium/metabolism , Methanococcus/chemistry , Methanococcus/genetics , Nucleic Acid Conformation , RNA, Archaeal/chemistry , RNA, Archaeal/metabolism , RNA, Bacterial/chemistry , RNA, Bacterial/metabolism , Ribosomal Proteins/isolation & purification , Thermus thermophilus/chemistry , Thermus thermophilus/genetics
13.
Biol Chem ; 379(7): 795-805, 1998 Jul.
Article in English | MEDLINE | ID: mdl-9705143

ABSTRACT

Crystal and solution structures of fourteen ribosomal proteins from thermophilic bacteria have been determined during the last decade. This paper reviews structural studies of ribosomal proteins from Thermus thermophilus carried out at the Institute of Protein Research (Pushchino, Russia) in collaboration with the University of Lund (Lund, Sweden) and the Center of Structural Biochemistry (Karolinska Institute, Huddinge, Sweden). New experimental data on the crystal structure of the ribosomal protein L30 from T. thermophilus are also included.


Subject(s)
Bacterial Proteins/chemistry , Ribosomal Proteins/chemistry , Thermus thermophilus/chemistry , Bacterial Proteins/metabolism , Binding Sites , RNA/metabolism , Ribosomal Proteins/metabolism
14.
Biochemistry (Mosc) ; 62(2): 221-4, 1997 Feb.
Article in English | MEDLINE | ID: mdl-9159876

ABSTRACT

Ribosomal protein L30 from Thermus thermophilus was overexpressed in E. coli cells. The recombinant protein was isolated and crystallized. The crystals belong to the spatial group P3(1) 12, and their crystallographic parameters are not different from those of crystals obtained earlier from the ribosomal protein isolated from T. thermophilus.


Subject(s)
Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Genes, Bacterial , Ribosomal Proteins/genetics , Ribosomal Proteins/isolation & purification , Thermus thermophilus/genetics , Base Sequence , Crystallization , Escherichia coli/genetics , Gene Expression , Oligonucleotide Probes/genetics , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification
15.
Proteins ; 27(2): 309-10, 1997 Feb.
Article in English | MEDLINE | ID: mdl-9061793

ABSTRACT

Crystals have been obtained for recombinant ribosomal protein S8 from Thermus thermophilus produced by Escherichia coli. The protein crystals have been grown in 40 mM potassium phosphate buffer (pH 6.0) in hanging drops equilibrated against saturated ammonium sulfate (unbuffered) with 2-methyl-2,4-pentandiol (v/v). The crystals belong to the space group P4(1(3)) 2(1)2 with cell parameters a = b = 67.65 A, c = 171.12 A. They diffract x-rays to 2.9 A resolution.


Subject(s)
Bacterial Proteins/chemistry , Ribosomal Proteins/chemistry , Thermus thermophilus/chemistry , Crystallization , Crystallography, X-Ray , Recombinant Fusion Proteins/chemistry
16.
FEBS Lett ; 330(1): 46-8, 1993 Sep 06.
Article in English | MEDLINE | ID: mdl-8370456

ABSTRACT

Hybrid complexes of the ribosomal proteins, TL4 and TL5, from Thermus thermophilus with 5 S ribosomal RNA from Escherichia coli and Bacillus stearothermophilus have been prepared. There was no competition between the two proteins for the binding sites. Stoichiometry of 5 S RNA binding for both proteins was 1:1 (protein/RNA). The TL4 protein competed with the E. coli ribosomal L5 protein, and the TL5 protein competed with the E. coli ribosomal proteins, L18 and L25, for binding with 5 S RNA.


Subject(s)
RNA, Ribosomal, 5S/metabolism , Ribosomal Proteins/metabolism , Thermus thermophilus/metabolism , Escherichia coli/metabolism , Geobacillus stearothermophilus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...