Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 296: 118721, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34952180

ABSTRACT

Current mitigation strategies to offset marine plastic pollution, a global concern, typically rely on preventing floating debris from reaching coastal ecosystems. Specifically, clean-up technologies are designed to collect plastics by removing debris from the aquatic environment such as rivers and estuaries. However, to date, there is little published data on their potential impact on riverine and estuarine organisms and ecosystems. Multiple parameters might play a role in the chances of biota and organic debris being unintentionally caught within a mechanical clean-up system, but their exact contribution to a potential impact is unknown. Here, we identified four clusters of parameters that can potentially determine the bycatch: (i) the environmental conditions in which the clean-up system is deployed, (ii) the traits of the biota the system interacts with, (iii) the traits of plastic items present in the system, and, (iv) the design and operation of the clean-up mechanism itself. To efficiently quantify and assess the influence of each of the clusters on bycatch, we suggest the use of transparent and objective tools. In particular, we discuss the use of Bayesian Belief Networks (BBNs) as a promising probabilistic modelling method for an evidence-based trade-off between removal efficiency and bycatch. We argue that BBN probabilistic models are a valuable tool to assist stakeholders, prior to the deployment of any clean-up technology, in selecting the best-suited mechanism to collect floating plastic debris while managing potential adverse effects on the ecosystem.


Subject(s)
Estuaries , Plastics , Bayes Theorem , Ecosystem , Environmental Monitoring , Rivers , Technology , Waste Products
2.
PLoS One ; 12(3): e0172968, 2017.
Article in English | MEDLINE | ID: mdl-28264006

ABSTRACT

Managed reef fish in the Atlantic Ocean of the southeastern United States (SEUS) support a multi-billion dollar industry. There is a broad interest in locating and protecting spawning fish from harvest, to enhance productivity and reduce the potential for overfishing. We assessed spatiotemporal cues for spawning for six species from four reef fish families, using data on individual spawning condition collected by over three decades of regional fishery-independent reef fish surveys, combined with a series of predictors derived from bathymetric features. We quantified the size of spawning areas used by reef fish across many years and identified several multispecies spawning locations. We quantitatively identified cues for peak spawning and generated predictive maps for Gray Triggerfish (Balistes capriscus), White Grunt (Haemulon plumierii), Red Snapper (Lutjanus campechanus), Vermilion Snapper (Rhomboplites aurorubens), Black Sea Bass (Centropristis striata), and Scamp (Mycteroperca phenax). For example, Red Snapper peak spawning was predicted in 24.7-29.0°C water prior to the new moon at locations with high curvature in the 24-30 m depth range off northeast Florida during June and July. External validation using scientific and fishery-dependent data collections strongly supported the predictive utility of our models. We identified locations where reconfiguration or expansion of existing marine protected areas would protect spawning reef fish. We recommend increased sampling off southern Florida (south of 27° N), during winter months, and in high-relief, high current habitats to improve our understanding of timing and location of reef fish spawning off the southeastern United States.


Subject(s)
Coral Reefs , Ecosystem , Fishes , Animals , Biodiversity , Databases, Factual , Geography , Models, Theoretical , Reproducibility of Results , Seasons , Southeastern United States
SELECTION OF CITATIONS
SEARCH DETAIL
...