Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Lipids ; 2016: 3128604, 2016.
Article in English | MEDLINE | ID: mdl-26955488

ABSTRACT

In a previous study of the characteristics of acyl derivatives of polyhydroxy milkweed oil (PHMWO), it was observed that the densities and viscosities of the respective derivatives decreased with increased chain length of the substituent acyl group. Thus from the polyhydroxy starting material, attenuation in viscosity of the derivatives relative to PHMWO was found in the order: PHMWO ≫ PAcMWE ≫ PBuMWE ≫ PPMWE (2332 : 1733 : 926.2 : 489.4 cSt, resp., at 40°C), where PAcMWE, PBuMWE, and PPMWE were the polyacetyl, polybutyroyl, and polypentanoyl ester derivatives, respectively. In an analogous manner, the densities also decreased as the chain length increased although not as precipitously compared to the viscosity drop. By inference, derivatives of vegetable oils with short chain length substituents on the triglyceride would be attractive in lubricant applications in view of their higher densities and possibly higher viscosity indices. Pursuant to this, we have explored the syntheses of formyl esters of three vegetable oils in order to examine the optimal density, viscosity, and related physical characteristics in relation to their suitability as lubricant candidates. In the absence of ready availability of formic anhydride, we opted to employ the epoxidized vegetable oils as substrates for formyl ester generation using glacial formic acid. The epoxy ring-opening process was smooth but was apparently followed by a simultaneous condensation reaction of the putative α-hydroxy formyl intermediate to yield vicinal diformyl esters from the oxirane. All three polyformyl esters milkweed, soy, and pennycress derivatives exhibited low coefficient of friction and a correspondingly much lower wear scar in the 4-ball antiwear test compared to the longer chain acyl analogues earlier studied.

2.
J Agric Food Chem ; 63(29): 6588-95, 2015 Jul 29.
Article in English | MEDLINE | ID: mdl-26189408

ABSTRACT

Milled Osage orange seeds (Maclura pomifera (Raf.) Schneid) were Soxhlet extracted with hexane, and portions of the extract were treated with activated carbon before solvent removal. The crude oil was winterized and degummed by centrifugation at low temperature. Decantation of the centrifugate gave an admixture of the triglycerides and free fatty acids. The free fatty acid content of the oil was removed when portions of the admixture were diluted with hexane and shaken with cold aqueous ammonium hydroxide (0.1 M) solution. The desiccant-dried organic phase was concentrated under reduced pressure to give the cleaned Osage orange triglyceride after solvent removal by rotary evaporation at 67 °C. Epoxidation of the resulting cleaned triglyceride was effected by reaction with in situ generated peroxy performic acid in H2O2. The oxirane rings of the derivatized oil were then opened using N,N-dibutylamine catalyzed by anhydrous ZnCl2 to afford the poly(α-hydroxydibutylamine) triglyceride. The purpose of this work was to derivatize and thereby stabilize this highly unsaturated tree oil for its eventual use in lubrication applications.


Subject(s)
Butylamines/chemistry , Maclura/chemistry , Plant Oils/chemistry , Seeds/chemistry , Triglycerides/chemical synthesis , Ethylene Oxide/chemical synthesis , Hydrogen Peroxide , Spectroscopy, Fourier Transform Infrared
3.
Methods Mol Biol ; 547: 313-24, 2009.
Article in English | MEDLINE | ID: mdl-19521855

ABSTRACT

Spearmint has one major monoterpene, (-)-carvone, that constitutes up to 90% of all the monoterpenes present. Likewise, the major phenylpropanoid-rosmarinic acid-in spearmint accounts for up to 70% of the phenylpropanoids produced from the plant. These two compounds are each produced by separate distinct biosynthetic pathways which provide an excellent opportunity to study the influence of a wide number of environmental and chemical conditions on secondary metabolism and plant growth. The techniques presented in this chapter employ 1 g of fresh weight material for each secondary metabolite analyses. Analysis of single compounds obtained from the two distinct metabolic pathways simplifies the interpretation of the metabolic results allowing for direct correlations of culture factors on secondary metabolism.


Subject(s)
Mentha spicata/growth & development , Chromatography, Gas , Chromatography, High Pressure Liquid , Mentha spicata/metabolism , Spectrophotometry, Ultraviolet
4.
Bioresour Technol ; 98(15): 2866-72, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17127051

ABSTRACT

Endoglucanase E1 from Acidothermus cellulolyticus was expressed cytosolically under control of the cauliflower mosaic virus 35S promoter in transgenic duckweed, Lemna minor 8627 without any obvious observable phenotypic effects on morphology or rate of growth. The recombinant enzyme co-migrated with the purified catalytic domain fraction of the native E1 protein on western blot analysis, revealing that the cellulose-binding domain was cleaved near or in the linker region. The duckweed-expressed enzyme was biologically active and the expression level was up to 0.24% of total soluble protein. The endoglucanase activity with carboxymethylcellulose averaged 0.2 units mg protein(-1) extracted from fresh duckweed. The optimal temperature and pH for E1 enzyme activity were about 80 degrees C and pH 5, respectively. While extraction with HEPES (N-[2-hydroxyethyl]piperazine-N'-[2-ethanesulfonic acid]) buffer (pH 8) resulted in the highest recovery of total soluble proteins and E1 enzyme, extraction with citrate buffer (pH 4.8) at 65 degrees C enriched relative amounts of E1 enzyme in the extract. This study demonstrates that duckweed may offer new options for the expression of cellulolytic enzymes in transgenic plants.


Subject(s)
Cellulase/metabolism , Gram-Positive Bacteria/enzymology , Plants, Genetically Modified , Buffers , Cellulase/genetics , Cellulase/isolation & purification , Hydrogen-Ion Concentration , Temperature
5.
J Chem Ecol ; 31(7): 1579-93, 2005 Jul.
Article in English | MEDLINE | ID: mdl-16222794

ABSTRACT

The influence of autoclaved fungal materials such as culture filtrate, freeze-dried mycelium (FDM), mycelium suspension, and spore suspension (SS) on the growth, morphogenesis, and carvone production of spearmint (Mentha spicata L.) plants was studied. Fungal materials were either applied as a drench or spray on the plants. Spearmint plants (cv. "294099") drenched with SS (1 x 10(8) spores/ml) of Trichoderma reesei showed no significant differences in leaf numbers, root numbers, or shoot numbers compared with nontreated controls. However, significantly higher fresh weights and carvone levels were observed in plants drenched with T. reesei SS compared with the untreated controls. Fungal materials derived from Aspergillus sp., Fusarium graminearum, F. sporotrichoides, Penicillium sp., P. acculeatum, Rhizopus oryzae, and T. reesei were sprayed on spearmint foliage. F. graminearum, F. sporotrichoides, or R. oryzae elicited no enhanced growth, morphogenesis, or secondary metabolism responses. The best growth and morphogenesis responses were obtained employing Aspergillus sp., Penicillium sp., or T. reesei foliar sprays. For example, spearmint cv. "557807" plants sprayed with 100 mg/l FDM T. reesei isolate NRRL 11460 C30 stimulated higher fresh weights (75%), shoot numbers (39%), leaf numbers (57%), and root numbers (108%) compared with untreated plants. This effect was not dose-dependent because similar growth and morphogenesis responses were obtained by testing 10, 100, or 1000 mg/l FDM concentrations. Carvone levels in fungal-treated foliar-sprayed plants were comparable to nontreated controls. However, total carvone levels per plant were higher in fungal-treated plants because of their increased fresh weight.


Subject(s)
Mentha spicata/microbiology , Mitosporic Fungi/physiology , Monoterpenes/metabolism , Animals , Cyclohexane Monoterpenes , Freeze Drying , Hot Temperature , Mentha spicata/growth & development , Mentha spicata/metabolism , Plant Structures/growth & development , Plant Structures/metabolism , Plant Structures/microbiology , Spores, Fungal
SELECTION OF CITATIONS
SEARCH DETAIL
...