Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Res ; 36(1): 59-67, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31998626

ABSTRACT

Particulate matter (PM) inhalation exposure affects exhaled CO2 concentration. Such exhaled CO2 refers to ventilation and perfusion of the cardiorespiratory system, the analysis of which is painless, non-invasive and simple to perform. This study examined the effect of prallethrin and d-phenothrin inhalation exposure on exhaled CO2 in mice using a simple method. Prallethrin and d-phenothrin were administered in male mice (Mus musculus) in a series of repeated inhalation exposures of lower and higher doses for 60 days. The lower dose was a mixture of 0.000141 mg/L prallethrin and 0.104 mg/L d-phenothrin, while the higher dose was a mixture of 0.00141 mg/L prallethrin and 1.04 mg/L d-phenothrin. The lower dose was based on a NOAEL value of prallethrin and d-phenothrin of 28 days exposure, while the higher one was ten times of the lower dose concentration. CO2 concentration was measured by means of the passage through NaOH 0.1 N, titrated by HCl 0.1 N. PMs were generated by the process of producing bubbles, inserted into the chamber containing mice. Mice were divided into four groups, namely: negative control (NC), positive control (PC), and lower- and higher-dose treatment groups, with three replicates for each group. Statistical difference analyses were observed in body weight and exhaled CO2 concentration between negative control and treatment groups, nevertheless, they did not differ significantly between the control and the treatment (lower and higher dose) groups. This study suggests that exhaled CO2 and body weight are not specific biomarkers to observe PMs inhalation exposure with respect to prallethrin and d-phenothrin mixtures.

2.
J Environ Manage ; 238: 194-200, 2019 May 15.
Article in English | MEDLINE | ID: mdl-30851558

ABSTRACT

The emergence of the aluminium recycling industry has led to an increase in aluminium-containing wastewater discharge to the environment. Biological treatment of metal is one of the solutions that can be provided as green technology. Screening tests showed that Brochothrix thermosphacta and Vibrio alginolyticus have the potential to remove aluminium from wastewater. Brochothrix thermosphacta removed up to 49.60%, while Vibrio alginolyticus was capable of removing up to 59.72% of 100 mg/L aluminium in acidic conditions. The removal of aluminium by V. alginolyticus was well fitted with pseudo-first-order kinetics (k1 = 0.01796/min), while B. thermosphacta showed pseudo-second-order kinetics (k2 = 0.125612 mg substrate/g adsorbent. hr) in the process of aluminium removal. V. alginolyticus had a higher rate constant under acidic conditions, while B. thermosphacta had a higher rate constant under neutral pH conditions.


Subject(s)
Aluminum , Brochothrix , Hydrogen-Ion Concentration , Kinetics , Vibrio alginolyticus
3.
J Health Pollut ; 9(24): 191212, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31893173

ABSTRACT

BACKGROUND: High concentrations of total petroleum hydrocarbons (TPH), iron (Fe), and manganese (Mn) were identified in soil samples from two shipyards where vessel dismantling activities take place in Tanjungjati Village, Indonesia, and subjected to bioremediation. OBJECTIVES: The aim of the present study was to determine whether the combination of surfactant solution, bioaugmentation (a consortium of Bacillus subtilis and Acinetobacter lwoffii), and biostimulation (nutrient amendment and aeration intermittent) would reduce TPH, Fe, and Mn levels from soil contaminated from ship dismantling activities. METHODS: Iron and Mn bioavailability were examined according to the Indonesian technical guidelines for soil chemical analysis with the help of atomic absorption spectrophotometry. The n-hexane solvent soil was extracted using the ultrasonic water bath method for TPH analysis. RESULTS: The highest removal results achieved were TPH (69.62%), Fe (87.10%), and Mn (29%) for Soil 1 samples and elimination of TPH (28.80%), Fe (65.10%), and Mn (57.38%) for Soil 2 samples using a combination of surfactant solution, bioaugmentation, and biostimulation (nutrient amendment and without aeration intermittent). Iron and Mn removal in the controls was higher than in the treated soils, which showed that Fe and Mn could decrease naturally in both contaminated soils. CONCLUSIONS: The present study showed that bioremediation using a combination of surfactant solution, a consortium of Bacillus subtilis, and Acinetobacter lwoffii, as well as a nutrient amendment, has the potential to degrade hydrocarbons in contaminated soil. Furthermore, Bacillus subtilis and Acinetobacter lwoffii consortium used for bioaugmentation have the potential to enhance the degradation of hydrocarbons in soil. COMPETING INTERESTS: The authors declare no competing financial interests.

4.
Int J Phytoremediation ; 20(7): 721-729, 2018 Jun 07.
Article in English | MEDLINE | ID: mdl-29723047

ABSTRACT

In this study, the removal of arsenic (As) by plant, Ludwigia octovalvis, in a pilot reed bed was optimized. A Box-Behnken design was employed including a comparative analysis of both Response Surface Methodology (RSM) and an Artificial Neural Network (ANN) for the prediction of maximum arsenic removal. The predicted optimum condition using the desirability function of both models was 39 mg kg-1 for the arsenic concentration in soil, an elapsed time of 42 days (the sampling day) and an aeration rate of 0.22 L/min, with the predicted values of arsenic removal by RSM and ANN being 72.6% and 71.4%, respectively. The validation of the predicted optimum point showed an actual arsenic removal of 70.6%. This was achieved with the deviation between the validation value and the predicted values being within 3.49% (RSM) and 1.87% (ANN). The performance evaluation of the RSM and ANN models showed that ANN performs better than RSM with a higher R2 (0.97) close to 1.0 and very small Average Absolute Deviation (AAD) (0.02) and Root Mean Square Error (RMSE) (0.004) values close to zero. Both models were appropriate for the optimization of arsenic removal with ANN demonstrating significantly higher predictive and fitting ability than RSM.


Subject(s)
Arsenic , Onagraceae , Biodegradation, Environmental , Neural Networks, Computer
5.
Int J Microbiol ; 2018: 3101498, 2018.
Article in English | MEDLINE | ID: mdl-30723505

ABSTRACT

Certain rhizobacteria can be applied to remove arsenic in the environment through bioremediation or phytoremediation. This study determines the minimum inhibitory concentration (MIC) of arsenic on identified rhizobacteria that were isolated from the roots of Ludwigia octovalvis (Jacq.) Raven. The arsenic biosorption capability of the was also analyzed. Among the 10 isolated rhizobacteria, five were Gram-positive (Arthrobacter globiformis, Bacillus megaterium, Bacillus cereus, Bacillus pumilus, and Staphylococcus lentus), and five were Gram-negative (Enterobacter asburiae, Sphingomonas paucimobilis, Pantoea spp., Rhizobium rhizogenes, and Rhizobium radiobacter). R. radiobacter showed the highest MIC of >1,500 mg/L of arsenic. All the rhizobacteria were capable of absorbing arsenic, and S. paucimobilis showed the highest arsenic biosorption capability (146.4 ± 23.4 mg/g dry cell weight). Kinetic rate analysis showed that B. cereus followed the pore diffusion model (R 2 = 0.86), E. asburiae followed the pseudo-first-order kinetic model (R 2 = 0.99), and R. rhizogenes followed the pseudo-second-order kinetic model (R 2 = 0.93). The identified rhizobacteria differ in their mechanism of arsenic biosorption, arsenic biosorption capability, and kinetic models in arsenic biosorption.

6.
Bull Environ Contam Toxicol ; 90(6): 714-9, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23595348

ABSTRACT

Wilting, especially of the leaves, was observed as an initial symptom of arsenate [As(V)] to Ludwigia octovalvis (Jacq.) P. H. Raven. The plants tolerated As(V) levels of 39 mg kg⁻¹ for as long as 35 days of exposure. After 91 days, the maximum concentration of As uptake in the plant occurred at As(V) concentration of 65 mg kg⁻¹ while As concentration in the stems, roots and leaves were 6139.9 ± 829.5, 1284.5 ± 242.9 and 1126.1 ± 117.2 mg kg⁻¹, respectively. In conclusion, As(V) could cause toxic effects in L. octovalvis and the plants could uptake and accumulate As in plant tissues.


Subject(s)
Arsenic/toxicity , Onagraceae/drug effects , Silicon Dioxide , Soil Pollutants/toxicity , Biomass , Microscopy, Electron, Scanning
SELECTION OF CITATIONS
SEARCH DETAIL
...