Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 361(6407): 1104-1108, 2018 09 14.
Article in English | MEDLINE | ID: mdl-30213910

ABSTRACT

Metasurfaces based on resonant nanophotonic structures have enabled innovative types of flat-optics devices that often outperform the capabilities of bulk components, yet these advances remain largely unexplored for quantum applications. We show that nonclassical multiphoton interferences can be achieved at the subwavelength scale in all-dielectric metasurfaces. We simultaneously image multiple projections of quantum states with a single metasurface, enabling a robust reconstruction of amplitude, phase, coherence, and entanglement of multiphoton polarization-encoded states. One- and two-photon states are reconstructed through nonlocal photon correlation measurements with polarization-insensitive click detectors positioned after the metasurface, and the scalability to higher photon numbers is established theoretically. Our work illustrates the feasibility of ultrathin quantum metadevices for the manipulation and measurement of multiphoton quantum states, with applications in free-space quantum imaging and communications.

2.
Opt Lett ; 41(17): 4079-82, 2016 Sep 01.
Article in English | MEDLINE | ID: mdl-27607977

ABSTRACT

We present an approach to quantum tomography based on first expanding a quantum state across extra degrees of freedom and then exploiting the introduced sparsity to perform reconstruction. We formulate its application to photonic circuits and show that measured spatial photon correlations at the output of a specially tailored discrete-continuous quantum walk can enable full reconstruction of any two-photon spatially entangled and mixed state at the input. This approach does not require any tunable elements, so it is well suited for integration with on-chip superconducting photon detectors.

SELECTION OF CITATIONS
SEARCH DETAIL
...