Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pathogens ; 11(4)2022 Mar 26.
Article in English | MEDLINE | ID: mdl-35456079

ABSTRACT

African swine fever virus causes hemorrhagic disease in swine. Attenuated strains are reported in Africa, Europe, and Asia. Few studies on the diagnostic detection of attenuated ASF viruses are available. Two groups of pigs were inoculated with an attenuated ASFV. Group 2 was also vaccinated with an attenuated porcine reproductive and respiratory syndrome virus vaccine. Commercially available ELISA, as well as extraction and qPCR assays, were used to detect antibodies in serum and oral fluids (OF) and nucleic acid in buccal swabs, tonsillar scrapings, OF, and blood samples collected over 93 days, respectively. After 12 dpi, serum (88.9% to 90.9%) in Group 1 was significantly better for antibody detection than OF (0.7% to 68.4%). Group 1's overall qPCR detection was highest in blood (48.7%) and OF (44.2%), with the highest detection in blood (85.2%) from 8 to 21 days post inoculation (dpi) and in OF (83.3%) from 1 to 7 dpi. Group 2's results were not significantly different from Group 1, but detection rates were lower overall. Early detection of attenuated ASFV variants requires active surveillance in apparently healthy animals and is only reliable at the herd level. Likewise, antibody testing will be needed to prove freedom from disease.

2.
Front Vet Sci ; 8: 723081, 2021.
Article in English | MEDLINE | ID: mdl-34422950

ABSTRACT

African swine fever (ASF) is an emerging viral contagious disease affecting domestic pigs (DP) and wild boar (WB). ASF causes significant economic damage to the pig industry worldwide due to nearly 100% mortality and the absence of medical treatments. Since 2019, an intensive spread of ASF has been observed in the Russian Far East region. This spread raises concerns for epidemiologists and ecologists given the potential threat to the WB population, which is an essential member of the region's wild ungulates and provides a notable share of food resources for predatory species. This study aims to determine the genotype of ASF virus circulating in the region, reveal the spatio-temporal patterns of the ASF outbreaks' emergence, and assess the potential reduction of the regional fauna because of expected depopulation of WB. The first historical case of ASF in the study region was caused by an African swine fever virus (ASFV) isolated from DPs and belonging to Genotype 2, CVR1; IGR-2 (TRS +). Sequencing results showed no significant differences among ASFV strains currently circulating in the Russian Federation, Europe, and China. The spatiotemporal analysis with the space-time permutations model demonstrated the presence of six statistically significant clusters of ASF outbreaks with three clusters in DPs and one cluster in WBs. DP outbreaks prevail in the north-west regions of the study area, while northern regions demonstrate a mixture of DP and WB outbreaks. Colocation analysis did not reveal a statistically significant pattern of grouping of one category of outbreaks around the others. The possible damage to the region's fauna was assessed by modeling the total body mass of wild ungulates before and after the wild boars' depopulation, considering a threshold density of WB population of 0.025 head/km2, according to the currently in force National Plan on the ASF Eradication in Russia. The results suggest the total mass of ungulates of the entire study region will likely decrease by 8.4% (95% CI: 4.1-13.0%), while it may decrease by 33.6% (19.3-46.1%) in the Primorsky Krai, thereby posing an undeniable threat to the predatory species of the region.

SELECTION OF CITATIONS
SEARCH DETAIL
...