Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Hematop ; 16(2): 119-122, 2023 Jun.
Article in English | MEDLINE | ID: mdl-38175442
2.
Nat Commun ; 13(1): 5491, 2022 09 19.
Article in English | MEDLINE | ID: mdl-36123354

ABSTRACT

Recent findings suggest that the ribosome itself modulates gene expression. However, whether ribosomes change composition across cell types or control cell fate remains unknown. Here, employing quantitative mass spectrometry during human embryonic stem cell differentiation, we identify dozens of ribosome composition changes underlying cell fate specification. We observe upregulation of RPL10A/uL1-containing ribosomes in the primitive streak followed by progressive decreases during mesoderm differentiation. An Rpl10a loss-of-function allele in mice causes striking early mesodermal phenotypes, including posterior trunk truncations, and inhibits paraxial mesoderm production in culture. Ribosome profiling in Rpl10a loss-of-function mice reveals decreased translation of mesoderm regulators, including Wnt pathway mRNAs, which are also enriched on RPL10A/uL1-containing ribosomes. We further show that RPL10A/uL1 regulates canonical and non-canonical Wnt signaling during stem cell differentiation and in the developing embryo. These findings reveal unexpected ribosome composition modularity that controls differentiation and development through the specialized translation of key signaling networks.


Subject(s)
Mesoderm , Ribosomal Proteins/metabolism , Stem Cells , Animals , Cell Differentiation/genetics , Humans , Mesoderm/metabolism , Mice , Ribosomes , Stem Cells/metabolism , Wnt Signaling Pathway
3.
Nat Commun ; 13(1): 1536, 2022 03 22.
Article in English | MEDLINE | ID: mdl-35318324

ABSTRACT

Therapeutic mRNAs and vaccines are being developed for a broad range of human diseases, including COVID-19. However, their optimization is hindered by mRNA instability and inefficient protein expression. Here, we describe design principles that overcome these barriers. We develop an RNA sequencing-based platform called PERSIST-seq to systematically delineate in-cell mRNA stability, ribosome load, as well as in-solution stability of a library of diverse mRNAs. We find that, surprisingly, in-cell stability is a greater driver of protein output than high ribosome load. We further introduce a method called In-line-seq, applied to thousands of diverse RNAs, that reveals sequence and structure-based rules for mitigating hydrolytic degradation. Our findings show that highly structured "superfolder" mRNAs can be designed to improve both stability and expression with further enhancement through pseudouridine nucleoside modification. Together, our study demonstrates simultaneous improvement of mRNA stability and protein expression and provides a computational-experimental platform for the enhancement of mRNA medicines.


Subject(s)
COVID-19 , RNA , COVID-19/therapy , Humans , Pseudouridine/metabolism , RNA Stability/genetics , RNA, Messenger/metabolism
4.
Dev Cell ; 56(14): 2089-2102.e11, 2021 07 26.
Article in English | MEDLINE | ID: mdl-34242585

ABSTRACT

In ribosomopathies, perturbed expression of ribosome components leads to tissue-specific phenotypes. What accounts for such tissue-selective manifestations as a result of mutations in the ribosome, a ubiquitous cellular machine, has remained a mystery. Combining mouse genetics and in vivo ribosome profiling, we observe limb-patterning phenotypes in ribosomal protein (RP) haploinsufficient embryos, and we uncover selective translational changes of transcripts that controlling limb development. Surprisingly, both loss of p53, which is activated by RP haploinsufficiency, and augmented protein synthesis rescue these phenotypes. These findings are explained by the finding that p53 functions as a master regulator of protein synthesis, at least in part, through transcriptional activation of 4E-BP1. 4E-BP1, a key translational regulator, in turn, facilitates selective changes in the translatome downstream of p53, and this thereby explains how RP haploinsufficiency may elicit specificity to gene expression. These results provide an integrative model to help understand how in vivo tissue-specific phenotypes emerge in ribosomopathies.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cell Cycle Proteins/metabolism , Extremities/embryology , Haploinsufficiency , Protein Biosynthesis , Protein Processing, Post-Translational , Ribosomal Proteins/physiology , Tumor Suppressor Protein p53/physiology , Adaptor Proteins, Signal Transducing/genetics , Animals , Body Patterning , Cell Cycle Proteins/genetics , Gene Expression Regulation, Developmental , Mice , Mice, Knockout , Phenotype , Ribosomes/metabolism
5.
bioRxiv ; 2021 Mar 30.
Article in English | MEDLINE | ID: mdl-33821271

ABSTRACT

Therapeutic mRNAs and vaccines are being developed for a broad range of human diseases, including COVID-19. However, their optimization is hindered by mRNA instability and inefficient protein expression. Here, we describe design principles that overcome these barriers. We develop a new RNA sequencing-based platform called PERSIST-seq to systematically delineate in-cell mRNA stability, ribosome load, as well as in-solution stability of a library of diverse mRNAs. We find that, surprisingly, in-cell stability is a greater driver of protein output than high ribosome load. We further introduce a method called In-line-seq, applied to thousands of diverse RNAs, that reveals sequence and structure-based rules for mitigating hydrolytic degradation. Our findings show that "superfolder" mRNAs can be designed to improve both stability and expression that are further enhanced through pseudouridine nucleoside modification. Together, our study demonstrates simultaneous improvement of mRNA stability and protein expression and provides a computational-experimental platform for the enhancement of mRNA medicines.

6.
Cell ; 169(6): 1051-1065.e18, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28575669

ABSTRACT

During eukaryotic evolution, ribosomes have considerably increased in size, forming a surface-exposed ribosomal RNA (rRNA) shell of unknown function, which may create an interface for yet uncharacterized interacting proteins. To investigate such protein interactions, we establish a ribosome affinity purification method that unexpectedly identifies hundreds of ribosome-associated proteins (RAPs) from categories including metabolism and cell cycle, as well as RNA- and protein-modifying enzymes that functionally diversify mammalian ribosomes. By further characterizing RAPs, we discover the presence of ufmylation, a metazoan-specific post-translational modification (PTM), on ribosomes and define its direct substrates. Moreover, we show that the metabolic enzyme, pyruvate kinase muscle (PKM), interacts with sub-pools of endoplasmic reticulum (ER)-associated ribosomes, exerting a non-canonical function as an RNA-binding protein in the translation of ER-destined mRNAs. Therefore, RAPs interconnect one of life's most ancient molecular machines with diverse cellular processes, providing an additional layer of regulatory potential to protein expression.


Subject(s)
Ribosomes/chemistry , Ribosomes/metabolism , Animals , Carrier Proteins/metabolism , Embryonic Stem Cells/metabolism , Endoplasmic Reticulum/metabolism , Mass Spectrometry , Membrane Proteins/metabolism , Mice , Protein Biosynthesis , Protein Interaction Mapping , Protein Processing, Post-Translational , Ribosomal Proteins/metabolism , Thyroid Hormones/metabolism , Ubiquitin-Protein Ligases/metabolism , Thyroid Hormone-Binding Proteins
7.
J Am Chem Soc ; 132(33): 11779-91, 2010 Aug 25.
Article in English | MEDLINE | ID: mdl-20681606

ABSTRACT

DNA-templated organic synthesis enables the translation of DNA sequences into synthetic small-molecule libraries suitable for in vitro selection. Previously, we described the DNA-templated multistep synthesis of a 13,824-membered small-molecule macrocycle library. Here, we report the discovery of small molecules that modulate the activity of kinase enzymes through the in vitro selection of this DNA-templated small-molecule macrocycle library against 36 biomedically relevant protein targets. DNA encoding selection survivors was amplified by PCR and identified by ultra-high-throughput DNA sequencing. Macrocycles corresponding to DNA sequences enriched upon selection against several protein kinases were synthesized on a multimilligram scale. In vitro assays revealed that these macrocycles inhibit (or activate) the kinases against which they were selected with IC(50) values as low as 680 nM. We characterized in depth a family of macrocycles enriched upon selection against Src kinase, and showed that inhibition was highly dependent on the identity of macrocycle building blocks as well as on backbone conformation. Two macrocycles in this family exhibited unusually strong Src inhibition selectivity even among kinases closely related to Src. One macrocycle was found to activate, rather than inhibit, its target kinase, VEGFR2. Taken together, these results establish the use of DNA-templated synthesis and in vitro selection to discover small molecules that modulate enzyme activities, and also reveal a new scaffold for selective ATP-competitive kinase inhibition.


Subject(s)
DNA/chemistry , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Small Molecule Libraries , Molecular Conformation , Protein Kinase Inhibitors/chemistry , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Structure-Activity Relationship , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-2/chemistry , Vascular Endothelial Growth Factor Receptor-2/metabolism , src-Family Kinases/antagonists & inhibitors , src-Family Kinases/chemistry , src-Family Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...