Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Environ Microbiol ; 78(23): 8431-40, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23023742

ABSTRACT

Plant diseases are caused by pathogen populations continuously subjected to evolutionary forces (genetic flow, selection, and recombination). Ascochyta blight, caused by Mycosphaerella pinodes, is one of the most damaging necrotrophic pathogens of field peas worldwide. In France, both winter and spring peas are cultivated. Although these crops overlap by about 4 months (March to June), primary Ascochyta blight infections are not synchronous on the two crops. This suggests that the disease could be due to two different M. pinodes populations, specialized on either winter or spring pea. To test this hypothesis, 144 pathogen isolates were collected in the field during the winter and spring growing seasons in Rennes (western France), and all the isolates were genotyped using amplified fragment length polymorphism (AFLP) markers. Furthermore, the pathogenicities of 33 isolates randomly chosen within the collection were tested on four pea genotypes (2 winter and 2 spring types) grown under three climatic regimes, simulating winter, late winter, and spring conditions. M. pinodes isolates from winter and spring peas were genetically polymorphic but not differentiated according to the type of cultivars. Isolates from winter pea were more pathogenic than isolates from spring pea on hosts raised under winter conditions, while isolates from spring pea were more pathogenic than those from winter pea on plants raised under spring conditions. These results show that disease developed on winter and spring peas was initiated by a single population of M. pinodes whose pathogenicity is a plastic trait modulated by the physiological status of the host plant.


Subject(s)
Ascomycota/isolation & purification , Ascomycota/pathogenicity , Pisum sativum/microbiology , Plant Diseases/microbiology , Amplified Fragment Length Polymorphism Analysis , Ascomycota/classification , Ascomycota/genetics , France , Genetic Variation , Genotype , Molecular Typing , Mycological Typing Techniques , Seasons
2.
Theor Appl Genet ; 123(2): 261-81, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21479935

ABSTRACT

Partial resistances, often controlled by quantitative trait loci (QTL), are considered to be more durable than monogenic resistances. Therefore, a precursor to developing efficient breeding programs for polygenic resistance to pathogens should be a greater understanding of genetic diversity and stability of resistance QTL in plants. In this study, we deciphered the diversity and stability of resistance QTL to Aphanomyces euteiches in pea towards pathogen variability, environments and scoring criteria, from two new sources of partial resistance (PI 180693 and 552), effective in French and USA infested fields. Two mapping populations of 178 recombinant inbred lines each, derived from crosses between 552 or PI 180693 (partially resistant) and Baccara (susceptible), were used to identify QTL for Aphanomyces root rot resistance in controlled and in multiple French and USA field conditions using several resistance criteria. We identified a total of 135 additive-effect QTL corresponding to 23 genomic regions and 13 significant epistatic interactions associated with partial resistance to A. euteiches in pea. Among the 23 additive-effect genomic regions identified, five were consistently detected, and showed highly stable effects towards A. euteiches strains, environments, resistance criteria, condition tests and RIL populations studied. These results confirm the complexity of inheritance of partial resistance to A. euteiches in pea and provide good bases for the choice of consistent QTL to use in marker-assisted selection schemes to increase current levels of resistance to A. euteiches in pea breeding programs.


Subject(s)
Aphanomyces/pathogenicity , Pisum sativum/genetics , Plant Diseases , Plant Roots , Quantitative Trait Loci , Chromosome Mapping , Chromosomes, Plant , Crosses, Genetic , France , Genetic Linkage , Genotype , Immunity, Innate , Pisum sativum/immunology , Pisum sativum/microbiology , Phenotype , Plant Diseases/genetics , Plant Diseases/immunology , Plant Roots/genetics , Plant Roots/immunology , Plant Roots/microbiology , United States
3.
Theor Appl Genet ; 120(5): 955-70, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20012740

ABSTRACT

A higher understanding of genetic and genomic bases of partial resistance in plants and their diversity regarding pathogen variability is required for a more durable management of resistance genetic factors in sustainable cropping systems. In this study, we investigated the diversity of genetic factors involved in partial resistance to Aphanomyces euteiches, a very damaging pathogen on pea and alfalfa, in Medicago truncatula. A mapping population of 178 recombinant inbred lines, from the cross F83005.5 (susceptible) and DZA045.5 (resistant), was used to identify quantitative trait loci for resistance to four A. euteiches reference strains belonging to the four main pathotypes currently known on pea and alfalfa. A major broad-spectrum genomic region, previously named AER1, was localized to a reduced 440 kb interval on chromosome 3 and was involved in complete or partial resistance, depending on the A. euteiches strain. We also identified 21 additive and/or epistatic genomic regions specific to one or two strains, several of them being anchored to the M. truncatula physical map. These results show that, in M. truncatula, a complex network of genetic loci controls partial resistance to different pea and alfalfa pathotypes of A. euteiches, suggesting a diversity of molecular mechanisms underlying partial resistance.


Subject(s)
Aphanomyces/pathogenicity , Gene Regulatory Networks , Genetic Loci , Immunity, Innate/genetics , Medicago truncatula , Plant Diseases/genetics , Chromosome Mapping , Chromosomes, Plant , Crosses, Genetic , Epistasis, Genetic , Gene Expression Regulation, Plant , Genes, Plant , Genetic Linkage , Genetic Markers , Medicago truncatula/genetics , Medicago truncatula/immunology , Medicago truncatula/parasitology , Molecular Sequence Data , Phenotype , Plant Diseases/immunology
4.
FEMS Microbiol Lett ; 273(1): 64-9, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17559389

ABSTRACT

A real-time PCR assay using 136F/211R primers and 161T TaqMan probe for the detection and quantification of Aphanomyces euteiches in soil is presented. The specificity of primers was tested on 105 different A. euteiches isolates, mainly from France. A calibration curve was established with a plasmid pHS1 resulting from the target region cloned into the pCR4 Topo vector (Invitrogen). The target copy number was evaluated and was constant whatever the isolate. A DNA-based method was able to discriminate between different artificial infestation levels in soil with small SDs thus validating the relevance of the extraction and amplification method in soil samples. Furthermore, a good correlation was observed between inoculum quantity in soil estimated by qPCR and root rot severity in plant evaluated by bioassays. These steps are essential when considering the feasibility of using a DNA-based method as a fast and accurate way to evaluate inoculum quantity in soil.


Subject(s)
Aphanomyces/isolation & purification , Colony Count, Microbial/methods , Polymerase Chain Reaction/methods , Soil Microbiology , Aphanomyces/genetics , Plant Diseases/microbiology , Plant Roots , Plasmids , Sensitivity and Specificity , Statistics as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...