Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Therm Biol ; 65: 32-40, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28343573

ABSTRACT

We investigated the metabolic and cellular stress responses in an endemic catfish Horabagrus brachysoma acclimated to ambient (26°C), 31, 33 and 36°C for 30 days. After acclimation, fish were sampled to investigate changes in the levels of blood glucose, tissue glycogen and ascorbic acid, activities of enzymes involved in glycolysis (LDH), citric acid cycle (MDH), gluconeogenesis (FBPase and G6Pase), pentose phosphate pathway (G6PDH), protein metabolism (AST and ALT), phosphate metabolism (ACP and ALP) and energy metabolism (ATPase), and HSP70 levels in various tissues. Acclimation to higher temperatures (33 and 36°C) significantly increased activities of LDH, MDH, ALP, ACP, AST, ALT and ATPase and blood glucose levels, whereas decreased the G6PDH enzyme activity and, tissue glycogen and ascorbic acid. Results indicated an overall increase in the carbohydrate, protein and lipid metabolism implying increased metabolic demands for maintaining homeostasis in fish acclimated to higher temperatures (33 and 36°C). We observed tissue specific response of HSP70 in H. brachysoma, with significant increase in gill and liver at 33 and 36°C, and in brain and muscle at 36°C, enabling cellular protection at higher acclimation temperatures. In conclusion, H. brachysoma adjusted metabolic and cellular responses to withstand increased temperatures, however, these responses suggest that the fish was under stress at 33°C or higher temperature.


Subject(s)
Acclimatization , Catfishes/physiology , Animals , Blood Glucose/analysis , Blood Glucose/metabolism , Carbohydrate Metabolism , Catfishes/blood , Energy Metabolism , Fish Proteins/analysis , Fish Proteins/metabolism , HSP70 Heat-Shock Proteins/analysis , HSP70 Heat-Shock Proteins/metabolism , Hot Temperature , Lipid Metabolism , Metabolic Networks and Pathways , Stress, Physiological
2.
Fish Physiol Biochem ; 38(4): 919-927, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22143442

ABSTRACT

Every organism responds to heat stress by synthesizing a group of evolutionarily conserved proteins called the heat-shock proteins (HSPs) that, by acting as molecular chaperones, protect the cell against the aggregation of denatured proteins and play a significant role in adaptation to temperature. The present study aimed to investigate the critical thermal maxima (CTMax) and the expression of HSP70 in different tissues (gill, brain, muscle and liver) of an endemic catfish Horabagrus brachysoma acclimated at either 20 or 30°C for 30 days. To understand the HSP70 response, fish acclimated to the two temperatures were exposed to preset temperatures (26, 30, 34, 36 and 38°C for 20°C acclimated fish and 32, 34, 36, 38 and 40°C for 30°C acclimated fish) for 2 h, followed by 1 h recovery at their respective acclimation temperatures. The HSP70 levels in the gill, brain, muscle and liver tissues were determined by Western blotting of one-dimensional sodium dodecyl sulphate-polyacrylamide gel electrophoresis. A significant (P < 0.05) increase in the CTMax values was observed for fish acclimated at 30°C (41.86 ± 0.39°C) than those acclimated at 20°C (39.13 ± 0.18°C). HSP70 was detected in all the tissues with the highest level in the liver followed by intermediate levels in muscle and brain, and lowest level in gill tissue, irrespective of the acclimation temperatures (20 or 30°C). The HSP70 levels were significantly higher (P < 0.05) in the tissues of fish acclimated at 30°C than those acclimated at 20°C. The mean induction temperature of HSP70 in all the tissues of fish acclimated at either 20 or 30°C was 30 and 34°C, respectively. The optimum temperature for HSP70 induction in all the tissues of fish acclimated at 20°C was 36°C, whereas for fish acclimated at 30°C was 36°C for gill and 38°C for brain, muscle and liver. Decreased levels of HSP70 were noted in all the tissues of fish when exposed to temperatures that exceeded the optimum temperatures for HSP70 inductions. Overall results indicated that acclimation temperature influences both temperature tolerance and induction of HSP70 in H. brachysoma.


Subject(s)
Acclimatization , Catfishes/physiology , HSP70 Heat-Shock Proteins/metabolism , Animals , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...