Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Trace Elem Med Biol ; 80: 127308, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37801785

ABSTRACT

Spatial and temporal variations have been found in the levels of arsenic (As) throughout the groundwater of the Ghaghara basin. Fifteen out of twenty-five districts in this basin are reported to be affected by As, where the levels of As in groundwater and soil exceed the permissible limits set by the WHO (10 µgl-1) and FAO (20 mgkg-1) respectively. These districts include a total of four municipalities in Nepal and eighty-six blocks in India, all of which have varying degrees of As contamination. Approximately 17 million people are at risk of As poisoning, with more than two orders of magnitude higher potential lifetime incremental cancer risk, constituting over 153 thousand potential additional cases of cancer due to As-contaminated drinking water. Out of the 90 As-contaminated blocks in the Ghaghara basin, 4 blocks have about 7-fold higher potential risk of developing cancer, 49 blocks have 8-37-fold higher risk, and 37 blocks have up to 375-fold higher risk compared to the upper limit of the USEPA acceptable range, which is 1 × 10-6-1 × 10-4. High accumulation of As has been reported in the nails, hair, and urine of local inhabitants, with higher levels observed in females than males. The toxicity of As is manifested in terms of a higher occurrence of various diseases. Reproductive endpoints, such as increased incidences of preterm birth, spontaneous abortion, stillbirth, low-birth weight, and neonatal death, have also been reported in the basin. The level of As in tube wells has been found to be negatively correlated with the depth (r = -0.906), and tube wells with high levels of As (>150 µgl-1) are generally located within close proximity (<10 km) to abandoned or present meander channels in the floodplain areas of the Ghaghara river. In addition to As contamination, the water quality index (WQI) in the Ghaghara basin is poor according to the BIS standards for drinking water. Groundwater in six out of fifteen districts is unsuitable for drinking purposes, with a WQI exceeding 100. The levels of As in agricultural soil in many villages of Ballia, Bahraich, and Lakhimpur Kheri districts have exceeded the FAO limit. Water from deep tube wells has been found to be relatively safe in terms of As content, and thus can be recommended for drinking purposes. However, the use of surface water needs to be encouraged for irrigation purposes in order to preserve soil health and reduce As contamination in the food chain, thereby minimizing the risk of cancer.


Subject(s)
Arsenic , Drinking Water , Groundwater , Neoplasms , Premature Birth , Water Pollutants, Chemical , Infant, Newborn , Male , Pregnancy , Female , Humans , Arsenic/analysis , Water Pollutants, Chemical/analysis , Neoplasms/epidemiology , Soil , India/epidemiology , Environmental Monitoring
2.
Environ Monit Assess ; 195(9): 1073, 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37615784

ABSTRACT

Rice (Oryza sativa L.) is particularly susceptible to arsenic (As) accumulation. Currently, to decrease the level of As accumulated in rice, various post-harvest methods, i.e., polishing, parboiling, pH-dependent soaking, washing, and cooking at different rice-to-water ratios (r/w), are being focused, because it removes significant amount of As from rice grain. Depending upon the rice variety and type, i.e., rough (with husk), husked (without husk/brown), or polished rice, these methods can remove 39-54% As by parboiling, 38-55% by polishing, 37-63% by soaking, and 6-80% by washing and cooking. Infants are highly vulnerable to As exposure; thus, these methods can be helpful for the production of rice-based infant foods. Although concern arises during the use of these methods that apart from decreasing the level of As in rice grain, they also lead to a significant loss of nutrients, such as macro- and micro-elements present in rice. Among these discussed methods, parboiling curtails 5-59%, polishing curtails 6-96%, soaking curtails 33-83%, and washing and cooking in different r/w reduce 8-81% of essential nutrients resulting in 2-90% reduction in contribution to the RDI of these nutrients through rice-based diet. Thus, these post-harvest arsenic removal methods, although reduce arsenic induced health hazard, but may also lead to malnutrition and compromised health in the population based on rice diet. There is a need to explore another way to reduce As from rice without compromising the nutrient availability or to supplement these nutrients through grain enrichment or by introducing additional dietary sources by changing eating habits; however, this may impose an extra economic burden on people.


Subject(s)
Arsenic , Oryza , Infant , Humans , Public Health , Environmental Monitoring , Edible Grain , Nutrients
3.
Sci Total Environ ; 874: 162443, 2023 May 20.
Article in English | MEDLINE | ID: mdl-36858216

ABSTRACT

Food-chain arsenic (As) contamination is a severe environmental and health problem worldwide, and its intake through rice affects billions of people. In this review, we have summarized the post harvest As removal methods from rice and their efficacy and feasibility. Rice grain subspecies (indica and japonica), size (short, medium and long), type (husked, parboiled or polished), soaking time, temperature and rice to water ratio (r/w) during washing and cooking are the major factors that affect the removal of total arsenic (tAs) from rice grain. The reduction in tAs was greater in japonica than indica rice and was directly proportional to As in husked rice. For the removal of As, a low water volume (1:2 r/w) was more effective during washing due to friction between rice grains, while high water (≥4 times water) during cooking was more effective. Up to 80 % As was removed by cooking in 1:10 (rice: water). Soaking rice in edible acids such as vinegar, acetic and ascorbic acid was not effective, except citric acid, which removes tAs up to 63 %. Human-health risk assessment showed that these post harvest and cooking methods reduce the non-carcinogenic and incremental lifetime cancer risk by up to 5-fold, as calculated on the basis of bioaccessible inorganic As. These post harvest methods also remove nutrient elements and vitamins. The recommended dietary intake (RDI) of Zn and Cu was particularly affected (up to 40 and 83 %). The levels of P, Mo, Mn and Co were still sufficient to meet the RDI through the rice-based diet, while rice is already poor in the RDI of Ca, K, Fe and Se, and their levels were further reduced by 0.22-44 %. In conclusion, these post harvest and cooking methods may significantly reduce As induced health risks; however, other dietary sources of nutrients need to be carefully evaluated and supplemented.


Subject(s)
Arsenic , Neoplasms , Oryza , Humans , Arsenic/analysis , Feasibility Studies , Food Contamination/analysis , Edible Grain/chemistry , Cooking/methods , Water , Diet
SELECTION OF CITATIONS
SEARCH DETAIL
...