Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Folia Microbiol (Praha) ; 69(1): 17-32, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38038797

ABSTRACT

The family Phyllobacteriaceae is a heterogeneous assemblage of more than 146 species of bacteria assigned to its existing 18 genera. Phylogenetic analyses have shown great phylogenetic diversity and also suggested about incorrect classification of several species that need to be reassessed for their proper phylogenetic classification. However, almost 50% of the family members belong to the genus Mesorhizobium only, of which the majority are symbiotic nitrogen fixers associated with different legumes. Other major genera are Phyllobacterium, Nitratireductor, Aquamicrobium, and Aminobacter. Nitrogen-fixing, legume nodulating members are present in Aminobacter and Phyllobacterium as well. Aquamicrobium spp. can degrade environmental pollutants, like 2,4-dichlorophenol, 4-chloro-2-methylphenol, and 4-chlorophenol. Chelativorans, Pseudaminobacter, Aquibium, and Oricola are the other genera that contain multiple species having diverse metabolic capacities, the rest being single-membered genera isolated from varied environments. In addition, heavy metal and antibiotic resistance, chemolithoautotrophy, poly-ß-hydroxybutyrate storage, cellulase production, etc., are the other notable characteristics of some of the family members. In this report, we have comprehensively reviewed each of the species of the family Phyllobacteriaceae in their eco-physiological aspects and found that the family is rich with ecologically and metabolically highly diverse bacteria having great potential for human welfare and environmental clean-up.


Subject(s)
Fabaceae , Phyllobacteriaceae , Humans , Phyllobacteriaceae/genetics , Phylogeny , Bacteria/genetics , Fabaceae/microbiology , Nitrogen/metabolism , DNA, Bacterial/metabolism , RNA, Ribosomal, 16S , Sequence Analysis, DNA
2.
BMC Complement Altern Med ; 17(1): 55, 2017 Jan 18.
Article in English | MEDLINE | ID: mdl-28100224

ABSTRACT

BACKGROUND: Lagerstroemia speciosa (L.) Pers. has medicinal importance. Bioactive phytochemicals isolated from different parts of L. speciosa, have revealed hypoglycemic, antibacterial, anti-inflammatory, antioxidant and hepato protective properties. Despite one report from Philippines detailing the use of L. speciosa as curative for fever and as well as diuretic, there is no experimental evidence about the hepatoprotective activity of the flower extracts. METHODS: Several spectroscopic methods, including GC-MS, were used to characterize phytochemicals present in the petal extract of L. speciosa. Ethanol extract of petals was evaluated for anti-oxidant and free radical scavenging properties by using methods related to hydrogen atom transfer, single electron transfer, reducing power, and metal chelation. This study has also revealed the in vitro antioxidant and in vivo hepatoprotective properties of petal extract against carbon tetra chloride (CCl4)-induced liver toxicity in Swiss albino mice. Hepatoprotection in CCl4 -intoxicated mice was studied with the aid of histology and different enzymatic and non-enzymatic markers of liver damage. Cytotoxicity tests were done using murein spleenocytes and cancareous cell lines, MCF7 and HepG2. RESULT: GCMS of the extract has revealed the presence of several potential antioxidant compounds, of them γ-Sitosterol and 1,2,3-Benzenetriol (Pyrogallol) were the predominant ones. The antioxidants activities of the flower-extract were significantly higher than curcumin (in terms of Nitric oxide scavenging activity; p = 0.0028) or ascorbic acid (in terms of 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) assay; p = 0.0022). The damage control by the flower extract can be attributed to the reduction in lipid peroxidation and restoration of catalase activity. In vitro cytotoxicity tests have shown that the flower extract did not affect growth and survivability of the cell lines. It left beyond doubt that a flower of L. speciosa is a reservoir of antioxidant and hepatoprotective agents capable of reversing the damage inflicted by CCl4-intoxication. CONCLUSION: Results from the present study may be used in developing a potential hepato-protective health drink enriched with antioxidants from Lagerstroemia speciosa (L.) Pers.


Subject(s)
Free Radical Scavengers/pharmacology , Lagerstroemia/chemistry , Liver/drug effects , Plant Extracts/pharmacology , Protective Agents/pharmacology , Animals , Antioxidants/pharmacology , Carbon Tetrachloride , Cell Line, Tumor , Female , Flowers/chemistry , Free Radical Scavengers/toxicity , Hep G2 Cells , Humans , Lagerstroemia/toxicity , Male , Mice , Plant Extracts/toxicity
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 151: 965-79, 2015 Dec 05.
Article in English | MEDLINE | ID: mdl-26188703

ABSTRACT

The optimized molecular structure, vibrational frequencies, corresponding vibrational assignments of 2-(4-methoxyphenyl)-4,5-dimethyl-1H-imidazole 3-oxide have been investigated experimentally and theoretically. Gauge-including atomic orbital (1)H NMR chemical shifts calculations were carried out and compared with experimental data. The HOMO and LUMO analysis is used to determine the charge transfer within the molecule. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization has been analyzed using NBO analysis. The calculated geometrical parameters are in agreement with that of similar derivatives. Molecular electrostatic potential was performed by the DFT method. Mulliken's net charges have been calculated and compared with the atomic natural charges. First and second hyperpolarizability are calculated in order to find its role in non-linear optics. Molecular docking is also reported.


Subject(s)
Cyclic N-Oxides/chemistry , Imidazoles/chemistry , Magnetic Resonance Spectroscopy/methods , Models, Molecular , Molecular Docking Simulation , Molecular Structure , Spectrophotometry, Infrared , Spectrum Analysis, Raman , Vibration
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 146: 307-22, 2015 Jul 05.
Article in English | MEDLINE | ID: mdl-25819320

ABSTRACT

In this work, the vibrational spectral analysis was carried out using FT-IR and FT-Raman spectroscopy of 2-(4-hydroxyphenyl)-4,5-dimethyl-1H-imidazole 3-oxide. The computations were performed at DFT levels of theory to get the optimized geometry and vibrational frequencies of the normal modes of the title compound using Gaussian09 software. The complete vibrational assignments of frequencies were made on the basis of potential energy distribution. The calculated HOMO and LUMO energies show the chemical activity of the molecule. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization has been analyzed using NBO analysis. The hyperpolarizability values are reported and the first hyperpolarizability of the title compound is 19.61 times that of standard NLO material urea. From the MEP plot, the negative charge covers the nitro group and the positive region is over the hydroxyl group and N-H part of the imidazole ring. The calculated (1)H NMR results are in good agreement with experimental data. Molecular docking study is also reported.


Subject(s)
Imidazoles/chemistry , Molecular Docking Simulation , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman
5.
PLoS One ; 10(3): e0119329, 2015.
Article in English | MEDLINE | ID: mdl-25750990

ABSTRACT

In this study, of the hundred Escherichia coli strains isolated from feral Pigeon faeces, eighty five strains were resistant to one or more antibiotics and fifteen sensitive to all the antibiotics tested. The only strain (among all antibiotic-resistant E. coli isolates) that possessed class 1 integron was PGB01. The dihydrofolate reductase gene of the said integron was cloned, sequenced and expressed in E. coli JM109. Since PGB01 was native to pigeon's gut, we have compared the growth of PGB01 at two different temperatures, 42°C (normal body temperature of pigeon) and 37°C (optimal growth temperature of E. coli; also the human body temperature), with E. coli K12. It was found that PGB01 grew better than the laboratory strain E. coli K12 at 37°C as well as at 42°C. In the thermal fitness assay, it was observed that the cells of PGB01 were better adapted to 42°C, resembling the average body temperature of pigeon. The strain PGB01 also sustained more microwave mediated thermal stress than E. coli K12 cells. The NMR spectra of the whole cells of PGB01 varied from E. coli K12 in several spectral peaks relating some metabolic adaptation to thermotolerance. On elevating the growth temperature from 37°C to 42°C, susceptibility to kanamycin (both strains were sensitive to it) of E. coli K12 was increased, but in case of PGB01 no change in susceptibility took place. We have also attempted to reveal the basis of trimethoprim resistance phenotype conferred by the dfrA7 gene homologue of PGB01. Molecular Dynamics (MD) simulation study of docked complexes, PGB01-DfrA7 and E. coli TMP-sensitive-Dfr with trimethoprim (TMP) showed loss of some of the hydrogen and hydrophobic interaction between TMP and mutated residues in PGB01-DfrA7-TMP complex compared to TMP-sensitive-Dfr-TMP complex. This loss of interaction entails decrease in affinity of TMP for PGB01-DfrA7 compared to TMP-sensitive-Dfr.


Subject(s)
Columbidae/microbiology , Escherichia coli/isolation & purification , Feces/microbiology , Trimethoprim Resistance , Animals , Escherichia coli/classification , Escherichia coli/growth & development , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Integrons , Microbial Sensitivity Tests , Temperature , Tetrahydrofolate Dehydrogenase/chemistry , Tetrahydrofolate Dehydrogenase/genetics
6.
PLoS One ; 9(9): e107703, 2014.
Article in English | MEDLINE | ID: mdl-25229331

ABSTRACT

Quorum sensing (QS) is a process mediated via small molecules termed autoinducers (AI) that allow bacteria to respond and adjust according to the cell population density by altering the expression of multitudinous genes. Since QS governs numerous bioprocesses in bacteria, including virulence, its inhibition promises to be an ideal target for the development of novel therapeutics. We found that the aqueous leaf extract of Psidium guajava (GLE) exhibited anti-QS properties as evidenced by inhibition of violacein production in Chromobacterium violaceum and swarming motility of Pseudomonas aeruginosa. The gram-negative bacterium, C. violaceum is a rare pathogen with high mortality rate. In this study, perhaps for the first time, we identified the target genes of GLE in C. violaceum MTCC 2656 by whole transcriptome analysis on Ion Torrent. Our data revealed that GLE significantly down-regulated 816 genes at least three fold, with p value ≤ 0.01, which comprises 19% of the C. violaceum MTCC 2656 genome. These genes were distributed throughout the genome and were associated with virulence, motility and other cellular processes, many of which have been described as quorum regulated in C. violaceum and other gram negative bacteria. Interestingly, GLE did not affect the growth of the bacteria. However, consistent with the gene expression pattern, GLE treated C. violaceum cells were restrained from causing lysis of human hepatoma cell line, HepG2, indicating a positive relationship between the QS-regulated genes and pathogenicity. Overall, our study proposes GLE as a QS inhibitor (QSI) with the ability to attenuate virulence without affecting growth. To the best of our knowledge, this is the first report which provides with a plausible set of candidate genes regulated by the QS system in the neglected pathogen C. violaceum.


Subject(s)
Chromobacterium/cytology , Chromobacterium/genetics , Gene Expression Profiling , Plant Extracts/pharmacology , Plant Leaves/chemistry , Psidium/chemistry , Quorum Sensing/drug effects , Carcinoma, Hepatocellular/pathology , Cell Death/drug effects , Chromobacterium/drug effects , Chromobacterium/physiology , Down-Regulation/drug effects , Gene Regulatory Networks/drug effects , Genome, Bacterial/genetics , Hep G2 Cells , Humans , Indoles/metabolism , Liver Neoplasms/pathology , Phenotype , Quorum Sensing/genetics , Time Factors , Virulence Factors/genetics , Water/chemistry
7.
PLoS One ; 8(8): e71753, 2013.
Article in English | MEDLINE | ID: mdl-23951238

ABSTRACT

BACKGROUND: In this study a large random collection (n=2188) of facultative oligotrophic bacteria, from 90 water samples gathered in three consecutive years (2007-2009) from three different sampling sites of River Mahananda in Siliguri, West Bengal, India, were investigated for the presence of class 1 integrons and sequences of the amplification products. METHODOLOGY/PRINCIPAL FINDINGS: Replica plating method was employed for determining the antibiotic resistance profile of the randomly assorted facultative oligotrophic isolates. Genomic DNA from each isolate was analyzed by PCR for the presence of class 1 integron. Amplicons were cloned and sequenced. Numerical taxonomy and 16S rRNA gene sequence analyses were done to ascertain putative genera of the class 1 integron bearing isolates. Out of 2188 isolates, 1667 (76.19%) were antibiotic-resistant comprising of both single-antibiotic resistance (SAR) and multiple-antibiotic resistant (MAR), and 521 (23.81%) were sensitive to all twelve different antibiotics used in this study. Ninety out of 2188 isolates produced amplicon(s) of varying sizes from 0.15 to 3.45 KB. Chi-square (χ(2)) test revealed that the possession of class 1 integron in sensitive, SAR and MAR is not equally probable at the 1% level of significance. Diverse antibiotic-resistance gene cassettes, aadA1, aadA2, aadA4, aadA5, dfrA1, dfrA5, dfrA7, dfrA12, dfrA16, dfrA17, dfrA28, dfrA30, dfr-IIe, blaIMP-9, aacA4, Ac-6'-Ib, oxa1, oxa10 and arr2 were detected in 64 isolates. The novel cassettes encoding proteins unrelated to any known antibiotic resistance gene function were identified in 26 isolates. Antibiotic-sensitive isolates have a greater propensity to carry gene cassettes unrelated to known antibiotic-resistance genes. The integron-positive isolates under the class Betaproteobacteria comprised of only two genera, Comamonas and Acidovorax of family Comamonadaceae, while isolates under class Gammaproteobacteria fell under the families, Moraxellaceae, Pseudomonadaceae, Aeromonadaceae and Enterobacteriaceae. CONCLUSIONS: Oligotrophic bacteria are good sources of novel genes as well as potential reservoirs of antibiotic resistance gene casettes.


Subject(s)
Betaproteobacteria/genetics , DNA, Bacterial/genetics , Drug Resistance, Multiple, Bacterial/genetics , Gammaproteobacteria/genetics , Integrons/genetics , Water Microbiology , Anti-Bacterial Agents/pharmacology , Base Sequence , Betaproteobacteria/classification , Betaproteobacteria/drug effects , DNA, Bacterial/classification , DNA, Complementary/classification , DNA, Complementary/genetics , Gammaproteobacteria/classification , Gammaproteobacteria/drug effects , India , Molecular Sequence Annotation , Phylogeny , RNA, Ribosomal, 16S/classification , RNA, Ribosomal, 16S/genetics , Rivers/microbiology , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...