Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 24(3): 102174, 2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33718827

ABSTRACT

Cementitious structures exhibit high compression strength but suffer from inherent brittleness. Conversely, nature creates structures using mostly brittle phases that overcome the strength-toughness trade-off, mainly through internalized packaging of brittle phases with soft organic binders. Here, we develop complex architectures of cementitious materials using an inverse replica approach where a soft polymer phase emerges as an external conformal coating. Architected polymer templates are printed, cement pastes are molded into these templates, and cementitious structures with thin polymer surface coating are achieved after the solubilization of sacrificial templates. These polymer-coated architected cementitious structures display unusual mechanical behavior with considerably higher toughness compared to conventional non-porous structures. They resist catastrophic failure through delayed damage propagation. Most interestingly, the architected structures show significant deformation recovery after releasing quasi-static loading, atypical in conventional cementitious structures. This approach allows a simple strategy to build more deformation resilient cementitious structures than their traditional counterparts.

2.
J Environ Manage ; 277: 111469, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33049615

ABSTRACT

Polyacrylic acid capped Fe3O4 - Cu-MOF (i-MOF) hybrid was prepared for rapid and selective lead removal, with 93% removal efficiency, exceptional selectivity, and adsorption capacity of 610 mg/g and 91% of i-MOF hybrid could be easily separated from the contaminated water using magnetic separation. The adsorption process followed a pseudo-second-order model and the adsorption efficiency decreased from 93% to 83% on raising the temperature from 25 °C to 40 °C. The change in equilibrium adsorption capacity with respect to equilibrium adsorbate concentration followed the Langmuir isotherm model. i-MOF had a high selectivity coefficient and removal efficiency for lead ions even when exposed simultaneously with naturally abundant cations (Na(I), Ca(II), Mg(II)). Release of Cu(II) ions from the i-MOF after Pb(II) removal suggested suggested ion-exchange to be the dominant removal mechanism. This new finding for Pb(II) removal with excellent adsorption performance using i-MOF through ion exchange based approach is a viable option for treating lead contaminated water.


Subject(s)
Metal-Organic Frameworks , Water Pollutants, Chemical , Water Purification , Adsorption , Ferric Compounds , Hydrogen-Ion Concentration , Ion Exchange , Kinetics , Lead , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...