Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Antibiot (Tokyo) ; 68(7): 453-62, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25649856

ABSTRACT

The growing problem of antibiotic-resistant bacteria is a major threat to human health. Paradoxically, new antibiotic discovery is declining, with most of the recently approved antibiotics corresponding to new uses for old antibiotics or structurally similar derivatives of known antibiotics. We used an in silico approach to design a new class of nontoxic antimicrobials for the bacteria-specific mechanosensitive ion channel of large conductance, MscL. One antimicrobial of this class, compound 10, is effective against methicillin-resistant Staphylococcus aureus with no cytotoxicity in human cell lines at the therapeutic concentrations. As predicted from in silico modeling, we show that the mechanism of action of compound 10 is at least partly dependent on interactions with MscL. Moreover we show that compound 10 cured a methicillin-resistant S. aureus infection in the model nematode Caenorhabditis elegans. Our work shows that compound 10, and other drugs that target MscL, are potentially important therapeutics against antibiotic-resistant bacterial infections.


Subject(s)
Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Enzyme Inhibitors/isolation & purification , Enzyme Inhibitors/pharmacology , Ion Channels/antagonists & inhibitors , Mechanotransduction, Cellular/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/toxicity , Caenorhabditis elegans , Cell Line , Disease Models, Animal , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/toxicity , Humans , Microbial Sensitivity Tests , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Treatment Outcome
2.
Sci Rep ; 4: 3616, 2014 Jan 22.
Article in English | MEDLINE | ID: mdl-24448077

ABSTRACT

Controlling the growth of the polymorphs of calcium carbonate is important in understanding the changing environmental conditions in the oceans. Aragonite is the main polymorph in the inner shells of marine organisms, and can be readily converted to calcite, which is the most stable polymorph of calcium carbonate. Both of these polymorphs are significantly more stable than vaterite, which is the other naturally occurring polymorph of calcium carbonate, and this is reflected in its limited distribution in nature. We have investigated the effect of high shear forces on the phase behaviour of calcium carbonate using a vortex fluidic device (VFD), with experimental parameters varied to explore calcium carbonate mineralisation. Variation of tilt angle, rotation speed and temperature allow for control over the size, shape and phase of the resulting calcium carbonate.

SELECTION OF CITATIONS
SEARCH DETAIL
...