Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Infect ; : 106286, 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39341401

ABSTRACT

OBJECTIVES: PICOBOO is a randomised, adaptive trial evaluating the immunogenicity, reactogenicity, and safety of COVID-19 booster strategies. We report data for second boosters among individuals 50-<70 years old primed with AZD1222 (50-<70y-AZD1222) until Day 84. METHODS: Contributed equally as first authors.Immunocompetent adults who received any first booster >three months prior were eligible. Participants were randomly allocated to BNT162b2, mRNA-1273 or NVX-CoV2373 1:1:1. The concentrations of ancestral anti-spike immunoglobulin was summarised as the geometric mean concentrations (GMC). Reactogenicity and safety outcomes were captured. Additional analyses including neutralising antibodies were performed on a subset. ACTRN12622000238774. RESULTS: Between Mar 2022-Aug 2023, 743 participants were recruited and had D28 samples; 155 belonged to the 50-<70y-AZD1222 stratum. The mean adjusted GMCs (95% credible intervals) were 20,690 (17,555-23,883), 23,867 (20,144-27,604) and 8,654 (7,267-9,962) U/mL at D28 following boosting with BNT162b2, mRNA-1273 and NVX-CoV2372, respectively, and 10,976 (8,826-13,196), 15,779 (12,512-19,070) and 6,559 (5 220-7 937) U/mL by D84. IgG against Omicron BA.5 was 2.7-2.9 times lower than the ancestral strain. Limited neutralisation against Omicron subvariants was found following all vaccines. Severe reactogenicity events were <4%. CONCLUSIONS: All vaccines were immunogenic with more rapid waning after mRNA vaccines. These data support boosting with vaccines with greater specificity for circulating Omicron subvariants.

2.
Trials ; 24(1): 202, 2023 Mar 18.
Article in English | MEDLINE | ID: mdl-36934272

ABSTRACT

BACKGROUND: The need for coronavirus 2019 (COVID-19) vaccination in different age groups and populations is a subject of great uncertainty and an ongoing global debate. Critical knowledge gaps regarding COVID-19 vaccination include the duration of protection offered by different priming and booster vaccination regimens in different populations, including homologous or heterologous schedules; how vaccination impacts key elements of the immune system; how this is modified by prior or subsequent exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and future variants; and how immune responses correlate with protection against infection and disease, including antibodies and effector and T cell central memory. METHODS: The Platform Trial In COVID-19 priming and BOOsting (PICOBOO) is a multi-site, multi-arm, Bayesian, adaptive, randomised controlled platform trial. PICOBOO will expeditiously generate and translate high-quality evidence of the immunogenicity, reactogenicity and cross-protection of different COVID-19 priming and booster vaccination strategies against SARS-CoV-2 and its variants/subvariants, specific to the Australian context. While the platform is designed to be vaccine agnostic, participants will be randomised to one of three vaccines at trial commencement, including Pfizer's Comirnaty, Moderna's Spikevax or Novavax's Nuvaxovid COVID-19 vaccine. The protocol structure specifying PICOBOO is modular and hierarchical. Here, we describe the Core Protocol, which outlines the trial processes applicable to all study participants included in the platform trial. DISCUSSION: PICOBOO is the first adaptive platform trial evaluating different COVID-19 priming and booster vaccination strategies in Australia, and one of the few established internationally, that is designed to generate high-quality evidence to inform immunisation practice and policy. The modular, hierarchical protocol structure is intended to standardise outcomes, endpoints, data collection and other study processes for nested substudies included in the trial platform and to minimise duplication. It is anticipated that this flexible trial structure will enable investigators to respond with agility to new research questions as they arise, such as the utility of new vaccines (such as bivalent, or SARS-CoV-2 variant-specific vaccines) as they become available for use. TRIAL REGISTRATION: Australian and New Zealand Clinical Trials Registry ACTRN12622000238774. Registered on 10 February 2022.


Subject(s)
COVID-19 , Vaccines , Humans , SARS-CoV-2 , COVID-19/prevention & control , COVID-19 Vaccines , Bayes Theorem , Australia , Vaccination , Randomized Controlled Trials as Topic
SELECTION OF CITATIONS
SEARCH DETAIL