Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Genetics ; 183(3): 917-27, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19737747

ABSTRACT

Vertebrate and invertebrate genomes contain scores of small secreted or transmembrane proteins with two immunoglobulin (Ig) domains. Many of them are expressed in the nervous system, yet their function is not well understood. We analyze here knockout alleles of all eight members of a family of small secreted or transmembrane Ig domain proteins, encoded by the Caenorhabditis elegans zig ("zwei Ig Domänen") genes. Most of these family members display the unusual feature of being coexpressed in a single neuron, PVT, whose axon is located along the ventral midline of C. elegans. One of these genes, zig-4, has previously been found to be required for maintaining axon position postembryonically in the ventral nerve cord of C. elegans. We show here that loss of zig-3 function results in similar postdevelopmental axon maintenance defects. The maintenance function of both zig-3 and zig-4 serves to counteract mechanical forces that push axons around, as well as various intrinsic attractive forces between axons that cause axon displacement if zig genes like zig-3 or zig-4 are deleted. Even though zig-3 is expressed only in a limited number of neurons, including PVT, transgenic rescue experiments show that zig-3 can function irrespective of which cell or tissue type it is expressed in. Double mutant analysis shows that zig-3 and zig-4 act together to affect axon maintenance, yet they are not functionally interchangeable. Both genes also act together with other, previously described axon maintenance factors, such as the Ig domain proteins DIG-1 and SAX-7, the C. elegans ortholog of the human L1 protein. Our studies shed further light on the use of dedicated factors to maintain nervous system architecture and corroborate the complexity of the mechanisms involved.


Subject(s)
Axons/physiology , Caenorhabditis elegans Proteins/physiology , Caenorhabditis elegans/physiology , Immunoglobulins/physiology , Animals , Animals, Genetically Modified , Axons/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Epistasis, Genetic , Gene Deletion , Genetic Complementation Test , Immunoglobulins/genetics , Immunoglobulins/metabolism , Models, Biological , Mutation , Neurons/cytology , Neurons/metabolism , Phenotype , Transgenes/genetics
2.
Curr Biol ; 18(24): 1978-85, 2008 Dec 23.
Article in English | MEDLINE | ID: mdl-19062279

ABSTRACT

Heparan sulfates (HSs) are extraordinarily complex extracellular sugar molecules that are critical components of multiple signaling systems controlling neuronal development. The molecular complexity of HSs arises through a series of specific modifications, including sulfations of sugar residues and epimerizations of their glucuronic acid moieties. The modifications are introduced nonuniformly along protein-attached HS polysaccharide chains by specific enzymes. Genetic analysis has demonstrated the importance of specific HS-modification patterns for correct neuronal development. However, it remains unclear whether HS modifications provide a merely permissive substrate or whether they provide instructive patterning information during development. We show here with single-cell resolution that highly stereotyped motor axon projections in C. elegans depend on specific HS-modification patterns. By manipulating extracellular HS-modification patterns, we can cell specifically reroute axons, indicating that HS modifications are instructive. This axonal rerouting is dependent on the HS core protein lon-2/glypican and both the axon guidance cue slt-1/Slit and its receptor eva-1. These observations suggest that a changed sugar environment instructs slt-1/Slit-dependent signaling via eva-1 to redirect axons. Our experiments provide genetic in vivo evidence for the "HS code" hypothesis which posits that specific combinations of HS modifications provide specific and instructive information to mediate the specificity of ligand/receptor interactions.


Subject(s)
Axons/metabolism , Caenorhabditis elegans/metabolism , Heparitin Sulfate/metabolism , Animals , Animals, Genetically Modified , Axons/ultrastructure , Body Patterning/physiology , Caenorhabditis elegans/genetics , Caenorhabditis elegans/growth & development , Caenorhabditis elegans/ultrastructure , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Extracellular Space/metabolism , Genes, Helminth , Heparitin Sulfate/genetics , Models, Neurological , Motor Neurons/metabolism , Motor Neurons/ultrastructure , Mutation , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Phenotype , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...