Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 12870, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38834632

ABSTRACT

One of the most recent advances in the genome editing field has been the addition of "TALE Base Editors", an innovative platform for cell therapy that relies on the deamination of cytidines within double strand DNA, leading to the formation of an uracil (U) intermediate. These molecular tools are fusions of transcription activator-like effector domains (TALE) for specific DNA sequence binding, split-DddA deaminase halves that will, upon catalytic domain reconstitution, initiate the conversion of a cytosine (C) to a thymine (T), and an uracil glycosylase inhibitor (UGI). We developed a high throughput screening strategy capable to probe key editing parameters in a precisely defined genomic context in cellulo, excluding or minimizing biases arising from different microenvironmental and/or epigenetic contexts. Here we aimed to further explore how target composition and TALEB architecture will impact the editing outcomes. We demonstrated how the nature of the linker between TALE array and split DddAtox head allows us to fine tune the editing window, also controlling possible bystander activity. Furthermore, we showed that both the TALEB architecture and spacer length separating the two TALE DNA binding regions impact the target TC editing dependence by the surrounding bases, leading to more restrictive or permissive editing profiles.


Subject(s)
Cytosine , Gene Editing , Thymine , Gene Editing/methods , Humans , Cytosine/metabolism , Cytosine/chemistry , Thymine/metabolism , Thymine/chemistry , Transcription Activator-Like Effectors/metabolism , Transcription Activator-Like Effectors/genetics , DNA/metabolism , DNA/genetics , HEK293 Cells
2.
Mol Ther ; 32(6): 1643-1657, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38582963

ABSTRACT

Gene therapy in hematopoietic stem and progenitor cells (HSPCs) shows great potential for the treatment of inborn metabolic diseases. Typical HSPC gene therapy approaches rely on constitutive promoters to express a therapeutic transgene, which is associated with multiple disadvantages. Here, we propose a novel promoterless intronic gene editing approach that triggers transgene expression only after cellular differentiation into the myeloid lineage. We integrated a splicing-competent eGFP cassette into the first intron of CD11b and observed expression of eGFP in the myeloid lineage but minimal to no expression in HSPCs or differentiated non-myeloid lineages. In vivo, edited HSPCs successfully engrafted in immunodeficient mice and displayed transgene expression in the myeloid compartment of multiple tissues. Using the same approach, we expressed alpha-L-iduronidase (IDUA), the defective enzyme in Mucopolysaccharidosis type I, and observed a 10-fold supraendogenous IDUA expression exclusively after myeloid differentiation. Edited cells efficiently populated bone marrow, blood, and spleen of immunodeficient mice, and retained the capacity to secrete IDUA ex vivo. Importantly, cells edited with the eGFP and IDUA transgenes were also found in the brain. This approach may unlock new therapeutic strategies for inborn metabolic and neurological diseases that require the delivery of therapeutics in brain.


Subject(s)
Gene Editing , Hematopoietic Stem Cells , Introns , Myeloid Cells , Transcription Activator-Like Effector Nucleases , Transgenes , Animals , Gene Editing/methods , Mice , Hematopoietic Stem Cells/metabolism , Humans , Myeloid Cells/metabolism , Transcription Activator-Like Effector Nucleases/genetics , Transcription Activator-Like Effector Nucleases/metabolism , Cell Differentiation/genetics , Genetic Therapy/methods , Iduronidase/genetics , Iduronidase/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Gene Expression , Cell Lineage/genetics , CD11b Antigen/genetics , CD11b Antigen/metabolism , Hematopoietic Stem Cell Transplantation/methods , Mucopolysaccharidosis I/therapy , Mucopolysaccharidosis I/genetics
3.
Front Bioeng Biotechnol ; 10: 1033669, 2022.
Article in English | MEDLINE | ID: mdl-36440442

ABSTRACT

TALE base editors are a recent addition to the genome editing toolbox. These molecular tools are fusions of a transcription activator-like effector domain (TALE), split-DddA deaminase halves, and an uracil glycosylase inhibitor (UGI) that have the distinct ability to directly edit double strand DNA, converting a cytosine (C) to a thymine (T). To dissect the editing rules of TALE-BE, we combined the screening of dozens of TALE-BE targeting nuclear genomic loci with a medium/high throughput strategy based on precise knock-in of TALE-BE target site collections into the cell genome. This latter approach allowed us to gain in depth insight of the editing rules in cellulo, while excluding confounding factors such as epigenetic and microenvironmental differences among different genomic loci. Using the knowledge gained, we designed TALE-BE targeting CD52 and achieved very high frequency of gene knock-out (up to 80% of phenotypic CD52 knock out). We further demonstrated that TALE-BE generate only insignificant levels of Indels and byproducts. Finally, we combined two molecular tools, a TALE-BE and a TALEN, for multiplex genome engineering, generating high levels of double gene knock-out (∼75%) without creation of translocations between the two targeted sites.

4.
FEBS Open Bio ; 12(1): 38-50, 2022 01.
Article in English | MEDLINE | ID: mdl-34510816

ABSTRACT

The development of gene editing technologies over the past years has allowed the precise and efficient insertion of transgenes into the genome of various cell types. Knock-in approaches using homology-directed repair and designer nucleases often rely on viral vectors, which can considerably impact the manufacturing cost and timeline of gene-edited therapeutic products. An attractive alternative would be to use naked DNA as a repair template. However, such a strategy faces challenges such as cytotoxicity from double-stranded DNA (dsDNA) to primary cells. Here, we sought to study the kinetics of transcription activator-like effector nuclease (TALEN)-mediated gene editing in primary T cells to improve nonviral gene knock-in. Harnessing this knowledge, we developed a rapid and efficient gene insertion strategy based on either short single-stranded oligonucleotides or large (2 Kb) linear naked dsDNA sequences. We demonstrated that a time-controlled two-step transfection protocol can substantially improve the efficiency of nonviral transgene integration in primary T cells. Using this approach, we achieved modification of up to ˜ 30% of T cells when inserting a chimeric antigen receptor (CAR) at the T-cell receptor alpha constant region (TRAC) locus to generate 'off-the shelf' CAR-T cells.


Subject(s)
Gene Editing , T-Lymphocytes , Electroporation/methods , Gene Editing/methods , Mutagenesis, Insertional , T-Lymphocytes/metabolism , Transfection
5.
Article in English | MEDLINE | ID: mdl-32671047

ABSTRACT

Here, we developed a straightforward methodology to generate TCRαß negative (allogeneic) cells for CAR-T cell therapies. With an early and transient expression of an anti-CD3 CAR in the engineered donor T cells, we programmed these cells to self-eliminate the TCR+ cell population and obtained an ultrapure TCRαß- population (99-99.9%) at the end of the CAR-T production. This novel and easy-to-implement procedure preserves the production yield and cell fitness and has the potential to streamline the manufacturing of "off-the-shelf" CAR T-cell therapies.

6.
BMC Biotechnol ; 19(1): 44, 2019 07 03.
Article in English | MEDLINE | ID: mdl-31269942

ABSTRACT

BACKGROUND: Engineered therapeutic cells have attracted a great deal of interest due to their potential applications in treating a wide range of diseases, including cancer and autoimmunity. Chimeric antigen receptor (CAR) T-cells are designed to detect and kill tumor cells that present a specific, predefined antigen. The rapid expansion of targeted antigen beyond CD19, has highlighted new challenges, such as autoactivation and T-cell fratricide, that could impact the capacity to manufacture engineered CAR T-cells. Therefore, the development of strategies to control CAR expression at the surface of T-cells and their functions is under intense investigations. RESULTS: Here, we report the development and evaluation of an off-switch directly embedded within a CAR construct (SWIFF-CAR). The incorporation of a self-cleaving degradation moiety controlled by a protease/protease inhibitor pair allowed the ex vivo tight and reversible control of the CAR surface presentation and the subsequent CAR-induced signaling and cytolytic functions of the engineered T-cells using the cell permeable Asunaprevir (ASN) small molecule. CONCLUSIONS: The strategy described in this study could, in principle, be broadly adapted to CAR T-cells development to circumvent some of the possible hurdle of CAR T-cell manufacturing. This system essentially creates a CAR T-cell with an integrated functional rheostat.


Subject(s)
Antigens, CD19/immunology , Gene Expression/immunology , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology , Antigens, CD19/genetics , Antigens, CD19/metabolism , Cell Line, Tumor , Cell Membrane/drug effects , Cell Membrane/metabolism , Gene Expression/drug effects , Gene Expression/genetics , Humans , Isoquinolines/pharmacology , Protease Inhibitors/pharmacology , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Sulfonamides/pharmacology , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism
7.
Animal Model Exp Med ; 1(2): 134-142, 2018 Jun.
Article in English | MEDLINE | ID: mdl-30891558

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is the third most commonly diagnosed cancer in males and the second in females worldwide in 2012. In the past 20 years, strong evidence suggests that cancer stem cells are the main culprit of cancer metastasis, chemotherapy resistance, and relapse. METHODS: To further understand the unique biological properties of cancer stem cells and uncover novel molecular targets to eradicate them, we first established a panel of patient-derived xenograft (PDX) tumor models using tumors surgically removed from human colorectal cancer patients. We then isolated CRC cancer stem cells based on their ALDH activity using fluorescent-activated cell sorting (FACS) and characterized their metabolic properties. RESULTS: Interestingly, we found that the CRC cancer stem cells (ie, CRC cells with higher ALDH activity, or ALDH+) express higher level of antioxidant genes and have lower level of reactive oxygen species (ROS) than non-CRC cancer stem cells (ie, CRC cells with lower ALDH activity, or ALDH-). The CRC cancer stem cells also possess more mitochondria mass and show higher mitochondrial activity. More intriguingly, we observed higher AMP-activated protein kinase (AMPK) activities in these CRC cancer stem cells. Inhibition of the AMPK activity using 2 AMPK inhibitors, Compound C and Iodotubercidin, preferentially induces cell death in CRC cancer stem cells. CONCLUSION: We propose that AMPK inhibitors may help to eradicate the CRC cancer stem cells and prevent the relapse of CRCs.

8.
Proc Natl Acad Sci U S A ; 113(1): 182-7, 2016 Jan 05.
Article in English | MEDLINE | ID: mdl-26677873

ABSTRACT

Macroautophagy is a key stress-response pathway that can suppress or promote tumorigenesis depending on the cellular context. Notably, Kirsten rat sarcoma (KRAS)-driven tumors have been reported to rely on macroautophagy for growth and survival, suggesting a potential therapeutic approach of using autophagy inhibitors based on genetic stratification. In this study, we evaluated whether KRAS mutation status can predict the efficacy to macroautophagy inhibition. By profiling 47 cell lines with pharmacological and genetic loss-of-function tools, we were unable to confirm that KRAS-driven tumor lines require macroautophagy for growth. Deletion of autophagy-related 7 (ATG7) by genome editing completely blocked macroautophagy in several tumor lines with oncogenic mutations in KRAS but did not inhibit cell proliferation in vitro or tumorigenesis in vivo. Furthermore, ATG7 knockout did not sensitize cells to irradiation or to several anticancer agents tested. Interestingly, ATG7-deficient and -proficient cells were equally sensitive to the antiproliferative effect of chloroquine, a lysosomotropic agent often used as a pharmacological tool to evaluate the response to macroautophagy inhibition. Moreover, both cell types manifested synergistic growth inhibition when treated with chloroquine plus the tyrosine kinase inhibitors erlotinib or sunitinib, suggesting that the antiproliferative effects of chloroquine are independent of its suppressive actions on autophagy.


Subject(s)
Antineoplastic Agents/pharmacology , Autophagy/drug effects , Cell Transformation, Neoplastic/drug effects , Chloroquine/pharmacology , Drug Resistance, Neoplasm/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Autophagy/genetics , Autophagy-Related Protein 7 , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Erlotinib Hydrochloride/pharmacology , Gene Knockout Techniques , Humans , Indoles/pharmacology , Mutation , Protein Kinase Inhibitors/pharmacology , Pyrroles/pharmacology , Radiation Tolerance/genetics , Sunitinib , Ubiquitin-Activating Enzymes/genetics
9.
Cell Stress Chaperones ; 15(6): 913-27, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20717760

ABSTRACT

Cancer cells are exposed to external and internal stresses by virtue of their unrestrained growth, hostile microenvironment, and increased mutation rate. These stresses impose a burden on protein folding and degradation pathways and suggest a route for therapeutic intervention in cancer. Proteasome and Hsp90 inhibitors are in clinical trials and a 20S proteasome inhibitor, Velcade, is an approved drug. Other points of intervention in the folding and degradation pathway may therefore be of interest. We describe a simple screen for inhibitors of protein synthesis, folding, and proteasomal degradation pathways in this paper. The molecular chaperone-dependent client v-Src was fused to firefly luciferase and expressed in HCT-116 colorectal tumor cells. Both luciferase and protein tyrosine kinase activity were preserved in cells expressing this fusion construct. Exposing these cells to the Hsp90 inhibitor geldanamycin caused a rapid reduction of luciferase and kinase activities and depletion of detergent-soluble v-Src::luciferase fusion protein. Hsp70 knockdown reduced v-Src::luciferase activity and, when combined with geldanamycin, caused a buildup of v-Src::luciferase and ubiquitinated proteins in a detergent-insoluble fraction. Proteasome inhibitors also decreased luciferase activity and caused a buildup of phosphotyrosine-containing proteins in a detergent-insoluble fraction. Protein synthesis inhibitors also reduced luciferase activity, but had less of an effect on phosphotyrosine levels. In contrast, certain histone deacetylase inhibitors increased luciferase and phosphotyrosine activity. A mass screen led to the identification of Hsp90 inhibitors, ubiquitin pathway inhibitors, inhibitors of Hsp70/Hsp40-mediated refolding, and protein synthesis inhibitors. The largest group of compounds identified in the screen increased luciferase activity, and some of these increase v-Src levels and activity. When used in conjunction with appropriate secondary assays, this screen is a powerful cell-based tool for studying compounds that affect protein synthesis, folding, and degradation.


Subject(s)
Enzyme Inhibitors/pharmacology , Histone Deacetylase Inhibitors/pharmacology , Molecular Chaperones/antagonists & inhibitors , Proteasome Inhibitors , Protein Folding/drug effects , Protein Synthesis Inhibitors/pharmacology , Benzoquinones/pharmacology , Cell Line, Tumor , Drug Evaluation, Preclinical , HSP40 Heat-Shock Proteins/antagonists & inhibitors , HSP40 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/antagonists & inhibitors , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , Histone Deacetylases/chemistry , Histone Deacetylases/pharmacology , Humans , Lactams, Macrocyclic/pharmacology , Luciferases, Firefly/genetics , Luciferases, Firefly/metabolism , Oncogene Protein pp60(v-src)/chemistry , Oncogene Protein pp60(v-src)/genetics , Oncogene Protein pp60(v-src)/metabolism , Proteasome Endopeptidase Complex/metabolism , RNA Interference , RNA, Small Interfering , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Ubiquitin/antagonists & inhibitors , Ubiquitin/metabolism
10.
Bioorg Med Chem Lett ; 19(1): 62-6, 2009 Jan 01.
Article in English | MEDLINE | ID: mdl-19041240

ABSTRACT

Insulin-like growth factor receptor (IGF-1R) is a growth factor receptor tyrosine kinase that acts as a critical mediator of cell proliferation and survival. Inhibitors of this receptor are believed to provide a new target in cancer therapy. We previously reported an isoquinolinedione series of IGF-1R inhibitors. Now we have identified a series of 3-cyanoquinoline compounds that are low nanomolar inhibitors of IGF-1R. The strategies, synthesis, and SAR behind the cyanoquinoline scaffold will be discussed.


Subject(s)
Antineoplastic Agents/chemical synthesis , Nitriles/chemical synthesis , Quinolines/chemical synthesis , Receptor, IGF Type 1/antagonists & inhibitors , Humans , Nitriles/pharmacology , Quinolines/pharmacology , Structure-Activity Relationship
11.
Bioorg Med Chem Lett ; 18(12): 3641-5, 2008 Jun 15.
Article in English | MEDLINE | ID: mdl-18501599

ABSTRACT

Insulin-like growth factor receptor (IGF-1R) is a growth factor receptor tyrosine kinase that acts as a critical mediator of cell proliferation and survival. This receptor is over-expressed or activated in tumor cells and is emerging as a novel target in cancer therapy. Efforts in our "Hit to Lead" group have generated a novel series of submicromolar IGF-1R inhibitors based on a isoquinolinedione template originating from a Lance enzyme HTS screen. Chemical triage and parallel synthesis incorporating focused library arrays were instrumental in moving these investigations through the Wyeth exploratory medicinal chemistry process. The strategies, synthesis, and SAR behind this interesting kinase scaffold will be described.


Subject(s)
Antineoplastic Agents/pharmacology , Isoquinolines/pharmacology , Receptor, IGF Type 1/antagonists & inhibitors , Antineoplastic Agents/chemistry , Dose-Response Relationship, Drug , Drug Design , Drug Screening Assays, Antitumor , Isoquinolines/chemistry , Models, Molecular , Molecular Structure , Small Molecule Libraries , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...