Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Bone Rep ; 21: 101777, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38952406

ABSTRACT

We report a case of a patient with a de novo germline heterozygous truncating variant of CTNNB1 gene (c.2172del, p.Tyr724Ter) causing neurodevelopmental disorder with spastic diplegia and visual defects syndrome (NEDSDV) associated with a new clinical feature - severe pediatric-onset osteoporosis and multiple fractures. A functional effect of the identified variant was demonstrated using adipose-tissue derived primary mesenchymal stem cells, where we detected the alteration of CTNNB1mRNA and ß-catenin protein levels using real-time PCR and Western blot analysis.

2.
J Environ Sci (China) ; 52: 284-292, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28254049

ABSTRACT

Microbial Fuel Cells (MFCs) are a promising technology for treating wastewater in a sustainable manner. In potential applications, low temperatures substantially reduce MFC performance. To better understand the effect of temperature and particularly how bioanodes respond to changes in temperature, we investigated the current generation of mixed-culture and pure-culture MFCs at two low temperatures, 10°C and 5°C. The results implied that the mixed-culture MFC sustainably performed better than the pure-culture (Shewanella) MFC at 10°C, but the electrogenic activity of anodic bacteria was substantially reduced at the lower temperature of 5°C. At 10°C, the maximum output voltage generated with the mixed-culture was 540-560mV, which was 10%-15% higher than that of Shewanella MFCs. The maximum power density reached 465.3±5.8mW/m2 for the mixed-culture at 10°C, while only 68.7±3.7mW/m2 was achieved with the pure-culture. It was shown that the anodic biofilm of the mixed-culture MFC had a lower overpotential and resistance than the pure-culture MFC. Phylogenetic analysis disclosed the prevalence of Geobacter and Pseudomonas rather than Shewanella in the mixed-culture anodic biofilm, which mitigated the increase of resistance or overpotential at low temperatures.


Subject(s)
Bioelectric Energy Sources , Microbial Consortia , Cold Temperature , Electrodes , Phylogeny , Shewanella , Waste Disposal, Fluid/methods , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL
...