Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Cent Sci ; 6(7): 1159-1168, 2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32724850

ABSTRACT

Biological membranes have distinct geometries that confer specific functions. However, the molecular mechanisms underlying the phenomenological geometry/function correlations remain elusive. We studied the effect of membrane geometry on the localization of membrane-bound proteins. Quantitative comparative experiments between the two most abundant cellular membrane geometries, spherical and cylindrical, revealed that geometry regulates the spatial segregation of proteins. The measured geometry-driven segregation reached 50-fold for membranes of the same mean curvature, demonstrating a crucial and hitherto unaccounted contribution by Gaussian curvature. Molecular-field theory calculations elucidated the underlying physical and molecular mechanisms. Our results reveal that distinct membrane geometries have specific physicochemical properties and thus establish a ubiquitous mechanistic foundation for unravelling the conserved correlations between biological function and membrane polymorphism.

2.
Nat Chem Biol ; 13(7): 724-729, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28481347

ABSTRACT

The targeted spatial organization (sorting) of Gprotein-coupled receptors (GPCRs) is essential for their biological function and often takes place in highly curved membrane compartments such as filopodia, endocytic pits, trafficking vesicles or endosome tubules. However, the influence of geometrical membrane curvature on GPCR sorting remains unknown. Here we used fluorescence imaging to establish a quantitative correlation between membrane curvature and sorting of three prototypic class A GPCRs (the neuropeptide Y receptor Y2, the ß1 adrenergic receptor and the ß2 adrenergic receptor) in living cells. Fitting of a thermodynamic model to the data enabled us to quantify how sorting is mediated by an energetic drive to match receptor shape and membrane curvature. Curvature-dependent sorting was regulated by ligands in a specific manner. We anticipate that this curvature-dependent biomechanical coupling mechanism contributes to the sorting, trafficking and function of transmembrane proteins in general.


Subject(s)
Cell Membrane/metabolism , Ligands , Receptors, G-Protein-Coupled/metabolism , Animals , Cell Membrane/chemistry , Optical Imaging , PC12 Cells , Peptide Fragments/pharmacology , Peptide YY/pharmacology , Rats , Receptors, G-Protein-Coupled/agonists , Thermodynamics
3.
Biophys J ; 106(1): 201-9, 2014 Jan 07.
Article in English | MEDLINE | ID: mdl-24411252

ABSTRACT

Transmembrane proteins are embedded in cellular membranes of varied lipid composition and geometrical curvature. Here, we studied for the first time the allosteric effect of geometrical membrane curvature on transmembrane protein structure and function. We used single-channel optical analysis of the prototypic transmembrane ß-barrel α-hemolysin (α-HL) reconstituted on immobilized single small unilamellar liposomes of different diameter and therefore curvature. Our data demonstrate that physiologically abundant geometrical membrane curvatures can enforce a dramatic allosteric regulation (1000-fold inhibition) of α-HL permeability. High membrane curvatures (1/diameter ~1/40 nm(-1)) compressed the effective pore diameter of α-HL from 14.2 ± 0.8 Å to 11.4 ± 0.6 Å. This reduction in effective pore area (~40%) when combined with the area compressibility of α-HL revealed an effective membrane tension of ~50 mN/m and a curvature-imposed protein deformation energy of ~7 kBT. Such substantial energies have been shown to conformationally activate, or unfold, ß-barrel and α-helical transmembrane proteins, suggesting that membrane curvature could likely regulate allosterically the structure and function of transmembrane proteins in general.


Subject(s)
Hemolysin Proteins/chemistry , Unilamellar Liposomes/chemistry , Allosteric Regulation , Amino Acid Motifs , Cell Membrane Permeability , Hemolysin Proteins/metabolism , Models, Biological , Staphylococcus aureus/chemistry , Unilamellar Liposomes/metabolism
4.
Cell Rep ; 4(6): 1213-23, 2013 Sep 26.
Article in English | MEDLINE | ID: mdl-24055060

ABSTRACT

Bin-Amphiphysin-Rvs (BAR) domain proteins are central regulators of many cellular processes involving membrane dynamics. BAR domains sculpt phosphoinositide-rich membranes to generate membrane protrusions or invaginations. Here, we report that, in addition to regulating membrane geometry, BAR domains can generate extremely stable lipid microdomains by "freezing" phosphoinositide dynamics. This is a general feature of BAR domains, because the yeast endocytic BAR and Fes/CIP4 homology BAR (F-BAR) domains, the inverse BAR domain of Pinkbar, and the eisosomal BAR protein Lsp1 induced phosphoinositide clustering and halted lipid diffusion, despite differences in mechanisms of membrane interactions. Lsp1 displays comparable low diffusion rates in vitro and in vivo, suggesting that BAR domain proteins also generate stable phosphoinositide microdomains in cells. These results uncover a conserved role for BAR superfamily proteins in regulating lipid dynamics within membranes. Stable microdomains induced by BAR domain scaffolds and specific lipids can generate phase boundaries and diffusion barriers, which may have profound impacts on diverse cellular processes.


Subject(s)
Membrane Lipids/metabolism , Membrane Microdomains/metabolism , Membrane Proteins/metabolism , Multiprotein Complexes/metabolism , Cell Membrane/metabolism , Models, Molecular , Protein Conformation , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL
...