Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Math Biol ; 83(6-7): 68, 2021 12 04.
Article in English | MEDLINE | ID: mdl-34870739

ABSTRACT

We consider an age-structured density-dependent population model on several temporally variable patches. There are two key assumptions on which we base model setup and analysis. First, intraspecific competition is limited to competition between individuals of the same age (pure intra-cohort competition) and it affects density-dependent mortality. Second, dispersal between patches ensures that each patch can be reached from every other patch, directly or through several intermediary patches, within individual reproductive age. Using strong monotonicity we prove existence and uniqueness of solution and analyze its large-time behavior in cases of constant, periodically variable and irregularly variable environment. In analogy to the next generation operator, we introduce the net reproductive operator and the basic reproduction number [Formula: see text] for time-independent and periodical models and establish the permanence dichotomy: if [Formula: see text], extinction on all patches is imminent, and if [Formula: see text], permanence on all patches is guaranteed. We show that a solution for the general time-dependent problem can be bounded by above and below by solutions to the associated periodic problems. Using two-side estimates, we establish uniform boundedness and uniform persistence of a solution for the general time-dependent problem and describe its asymptotic behaviour.

2.
Anal Math Phys ; 11(4): 166, 2021.
Article in English | MEDLINE | ID: mdl-34566882

ABSTRACT

In this paper we develop a compartmental model of SIR type (the abbreviation refers to the number of Susceptible, Infected and Recovered people) that models the population dynamics of two diseases that can coinfect. We discuss how the underlying dynamics depends on the carrying capacity K: from a simple dynamics to a more complex. This can also help in understanding the appearance of more complicated dynamics, for example, chaos and periodic oscillations, for large values of K. It is also presented that pathogens can invade in population and their invasion depends on the carrying capacity K which shows that the progression of disease in population depends on carrying capacity. More specifically, we establish all possible scenarios (the so-called transition diagrams) describing an evolution of an (always unique) locally stable equilibrium state (with only non-negative compartments) for fixed fundamental parameters (density independent transmission and vital rates) as a function of the carrying capacity K. An important implication of our results is the following important observation. Note that one can regard the value of K as the natural 'size' (the capacity) of a habitat. From this point of view, an isolation of individuals (the strategy which showed its efficiency for COVID-19 in various countries) into smaller resp. larger groups can be modelled by smaller resp. bigger values of K. Then we conclude that the infection dynamics becomes more complex for larger groups, as it fairly maybe expected for values of the reproduction number R 0 ≈ 1 . We show even more, that for the values R 0 > 1 there are several (in fact four different) distinguished scenarios where the infection complexity (the number of nonzero infected classes) arises with growing K. Our approach is based on a bifurcation analysis which allows to generalize considerably the previous Lotka-Volterra model considered previously in Ghersheen et al. (Math Meth Appl Sci 42(8), 2019).

3.
J Chem Phys ; 151(12): 124309, 2019 Sep 28.
Article in English | MEDLINE | ID: mdl-31575174

ABSTRACT

An analytical solution of a three-level model of symmetry breaking in excited AL-D-AR quadrupolar triads with an electron donor D and identical electron acceptors AL and AR is derived, in particular, an analytical expression for the dissymmetry parameter (difference in charges, in electron charge units, on the left and right arms of the molecule) is obtained. The model predicts the threshold dependence of the symmetry breaking degree on the parameters of the molecule and its interaction with the solvent. It is shown that for typical molecular parameters, symmetry breaking occurs as a charge transfer from one arm of the molecule to the other with nearly invariable donor charge. A considerable variation of the donor charge in the course of symmetry breaking is predicted for triads with small energy gap between the ground and first excited states. Analysis of the results shows that for a large parameter area, they are very similar to those obtained in a much simpler two-level model, which suggests that instead of a more realistic three-level model, we can use a two-level model to describe symmetry breaking in excited quadrupole molecules. The theory of symmetry breaking effect on the intramolecular vibrational spectra is developed. A comparison of the effect of solvent polarity on IR spectra changes due to an increase in the degree of symmetry breaking with the available experimental data shows that the model adequately describes this phenomenon.

4.
Science ; 314(5799): 638-41, 2006 Oct 27.
Article in English | MEDLINE | ID: mdl-17068260

ABSTRACT

Sorption of actinides, particularly plutonium, onto submicrometer-sized colloids increases their mobility, but these plutonium colloids are difficult to detect in the far-field. We identified actinides on colloids in the groundwater from the Mayak Production Association, Urals, Russia; at the source, the plutonium activity is approximately 1000 becquerels per liter. Plutonium activities are still 0.16 becquerels per liter at a distance of 3 kilometers, where 70 to 90 mole percent of the plutonium is sorbed onto colloids, confirming that colloids are responsible for the long-distance transport of plutonium. Nano-secondary ion mass spectrometry elemental maps reveal that amorphous iron oxide colloids adsorb Pu(IV) hydroxides or carbonates along with uranium carbonates.

SELECTION OF CITATIONS
SEARCH DETAIL
...