Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
PLoS Comput Biol ; 20(3): e1012008, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38551989

ABSTRACT

Populations evolve by accumulating advantageous mutations. Every population has some spatial structure that can be modeled by an underlying network. The network then influences the probability that new advantageous mutations fixate. Amplifiers of selection are networks that increase the fixation probability of advantageous mutants, as compared to the unstructured fully-connected network. Whether or not a network is an amplifier depends on the choice of the random process that governs the evolutionary dynamics. Two popular choices are Moran process with Birth-death updating and Moran process with death-Birth updating. Interestingly, while some networks are amplifiers under Birth-death updating and other networks are amplifiers under death-Birth updating, so far no spatial structures have been found that function as an amplifier under both types of updating simultaneously. In this work, we identify networks that act as amplifiers of selection under both versions of the Moran process. The amplifiers are robust, modular, and increase fixation probability for any mutant fitness advantage in a range r ∈ (1, 1.2). To complement this positive result, we also prove that for certain quantities closely related to fixation probability, it is impossible to improve them simultaneously for both versions of the Moran process. Together, our results highlight how the two versions of the Moran process differ and what they have in common.


Subject(s)
Biological Evolution , Models, Biological , Population Dynamics , Mutation , Probability , Selection, Genetic
2.
J R Soc Interface ; 20(208): 20230355, 2023 11.
Article in English | MEDLINE | ID: mdl-38016637

ABSTRACT

Natural selection is usually studied between mutants that differ in reproductive rate, but are subject to the same population structure. Here we explore how natural selection acts on mutants that have the same reproductive rate, but different population structures. In our framework, population structure is given by a graph that specifies where offspring can disperse. The invading mutant disperses offspring on a different graph than the resident wild-type. We find that more densely connected dispersal graphs tend to increase the invader's fixation probability, but the exact relationship between structure and fixation probability is subtle. We present three main results. First, we prove that if both invader and resident are on complete dispersal graphs, then removing a single edge in the invader's dispersal graph reduces its fixation probability. Second, we show that for certain island models higher invader's connectivity increases its fixation probability, but the magnitude of the effect depends on the exact layout of the connections. Third, we show that for lattices the effect of different connectivity is comparable to that of different fitness: for large population size, the invader's fixation probability is either constant or exponentially small, depending on whether it is more or less connected than the resident.


Subject(s)
Biological Evolution , Selection, Genetic , Mutation , Population Dynamics , Probability
3.
Proc Natl Acad Sci U S A ; 120(20): e2221080120, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37155877

ABSTRACT

Direct reciprocity is a powerful mechanism for the evolution of cooperation based on repeated interactions between the same individuals. But high levels of cooperation evolve only if the benefit-to-cost ratio exceeds a certain threshold that depends on memory length. For the best-explored case of one-round memory, that threshold is two. Here, we report that intermediate mutation rates lead to high levels of cooperation, even if the benefit-to-cost ratio is only marginally above one, and even if individuals only use a minimum of past information. This surprising observation is caused by two effects. First, mutation generates diversity which undermines the evolutionary stability of defectors. Second, mutation leads to diverse communities of cooperators that are more resilient than homogeneous ones. This finding is relevant because many real-world opportunities for cooperation have small benefit-to-cost ratios, which are between one and two, and we describe how direct reciprocity can attain cooperation in such settings. Our result can be interpreted as showing that diversity, rather than uniformity, promotes evolution of cooperation.


Subject(s)
Cooperative Behavior , Game Theory , Humans , Biological Evolution , Mutation , Mutation Rate
4.
Phys Rev E ; 106(3-1): 034321, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36266862

ABSTRACT

Structural balance theory is an established framework for studying social relationships of friendship and enmity. These relationships are modeled by a signed network whose energy potential measures the level of imbalance, while stochastic dynamics drives the network toward a state of minimum energy that captures social balance. It is known that this energy landscape has local minima that can trap socially aware dynamics, preventing it from reaching balance. Here we first study the robustness and attractor properties of these local minima. We show that a stochastic process can reach them from an abundance of initial states and that some local minima cannot be escaped by mild perturbations of the network. Motivated by these anomalies, we introduce best-edge dynamics (BED), a new plausible stochastic process. We prove that BED always reaches balance and that it does so fast in various interesting settings.

5.
Sci Rep ; 12(1): 1526, 2022 01 27.
Article in English | MEDLINE | ID: mdl-35087091

ABSTRACT

Motivated by COVID-19, we develop and analyze a simple stochastic model for the spread of disease in human population. We track how the number of infected and critically ill people develops over time in order to estimate the demand that is imposed on the hospital system. To keep this demand under control, we consider a class of simple policies for slowing down and reopening society and we compare their efficiency in mitigating the spread of the virus from several different points of view. We find that in order to avoid overwhelming of the hospital system, a policy must impose a harsh lockdown or it must react swiftly (or both). While reacting swiftly is universally beneficial, being harsh pays off only when the country is patient about reopening and when the neighboring countries coordinate their mitigation efforts. Our work highlights the importance of acting decisively when closing down and the importance of patience and coordination between neighboring countries when reopening.


Subject(s)
COVID-19/epidemiology , Models, Biological , Quarantine , COVID-19/transmission , Humans , Policy
6.
Polymers (Basel) ; 13(19)2021 Oct 02.
Article in English | MEDLINE | ID: mdl-34641209

ABSTRACT

The present paper documents and discusses research work associated with a newly designed passenger door structure demonstrator. The composite structure was manufactured from carbon-fiber-reinforced thermoplastic resin. A composite frame with a variable cross-section was designed, optimized, and fabricated using thermoforming technology. Both numerical simulations and experiments supported structural verification according to the damage tolerance philosophy; i.e., impact damage is presented. The Tsai-Wu and maximal stress criteria were used for damage analysis of the composite parts. Topological optimization of the metal hinges from the point of view of weight reduction was used. All expected parameters and proposed requirements of the mechanical properties were proved and completed. The door panel showed an expected numerically evaluated residual strength (ultimate structure load) as well as meeting airworthiness requirements. No impact damage propagation in the composite parts was observed during mechanical tests, even though visible impact damage was introduced into the structure. No significant difference between the numerical simulations and the experimentally measured total deformation was observed. Repeated deformation measurements during fatigue showed a nonlinear structure behavior. This can be attributed to the relaxation of thermoplastics.

7.
Nat Commun ; 12(1): 4009, 2021 06 29.
Article in English | MEDLINE | ID: mdl-34188036

ABSTRACT

Selection and random drift determine the probability that novel mutations fixate in a population. Population structure is known to affect the dynamics of the evolutionary process. Amplifiers of selection are population structures that increase the fixation probability of beneficial mutants compared to well-mixed populations. Over the past 15 years, extensive research has produced remarkable structures called strong amplifiers which guarantee that every beneficial mutation fixates with high probability. But strong amplification has come at the cost of considerably delaying the fixation event, which can slow down the overall rate of evolution. However, the precise relationship between fixation probability and time has remained elusive. Here we characterize the slowdown effect of strong amplification. First, we prove that all strong amplifiers must delay the fixation event at least to some extent. Second, we construct strong amplifiers that delay the fixation event only marginally as compared to the well-mixed populations. Our results thus establish a tight relationship between fixation probability and time: Strong amplification always comes at a cost of a slowdown, but more than a marginal slowdown is not needed.


Subject(s)
Biological Evolution , Genetic Fitness/genetics , Selection, Genetic/genetics , Models, Genetic , Mutation/genetics , Population Dynamics , Time Factors
8.
PLoS Comput Biol ; 16(1): e1007494, 2020 01.
Article in English | MEDLINE | ID: mdl-31951609

ABSTRACT

The fixation probability of a single mutant invading a population of residents is among the most widely-studied quantities in evolutionary dynamics. Amplifiers of natural selection are population structures that increase the fixation probability of advantageous mutants, compared to well-mixed populations. Extensive studies have shown that many amplifiers exist for the Birth-death Moran process, some of them substantially increasing the fixation probability or even guaranteeing fixation in the limit of large population size. On the other hand, no amplifiers are known for the death-Birth Moran process, and computer-assisted exhaustive searches have failed to discover amplification. In this work we resolve this disparity, by showing that any amplification under death-Birth updating is necessarily bounded and transient. Our boundedness result states that even if a population structure does amplify selection, the resulting fixation probability is close to that of the well-mixed population. Our transience result states that for any population structure there exists a threshold r⋆ such that the population structure ceases to amplify selection if the mutant fitness advantage r is larger than r⋆. Finally, we also extend the above results to δ-death-Birth updating, which is a combination of Birth-death and death-Birth updating. On the positive side, we identify population structures that maintain amplification for a wide range of values r and δ. These results demonstrate that amplification of natural selection depends on the specific mechanisms of the evolutionary process.


Subject(s)
Models, Biological , Population Dynamics/statistics & numerical data , Selection, Genetic/physiology , Computational Biology , Mutation/physiology , Population Density , Stochastic Processes
9.
Commun Biol ; 2: 138, 2019.
Article in English | MEDLINE | ID: mdl-31044163

ABSTRACT

The rate of biological evolution depends on the fixation probability and on the fixation time of new mutants. Intensive research has focused on identifying population structures that augment the fixation probability of advantageous mutants. But these amplifiers of natural selection typically increase fixation time. Here we study population structures that achieve a tradeoff between fixation probability and time. First, we show that no amplifiers can have an asymptotically lower absorption time than the well-mixed population. Then we design population structures that substantially augment the fixation probability with just a minor increase in fixation time. Finally, we show that those structures enable higher effective rate of evolution than the well-mixed population provided that the rate of generating advantageous mutants is relatively low. Our work sheds light on how population structure affects the rate of evolution. Moreover, our structures could be useful for lab-based, medical, or industrial applications of evolutionary optimization.


Subject(s)
Genetics, Population , Population Dynamics , Probability , Models, Genetic , Mutation , Selection, Genetic
10.
Proc Natl Acad Sci U S A ; 115(48): 12241-12246, 2018 11 27.
Article in English | MEDLINE | ID: mdl-30429320

ABSTRACT

Indirect reciprocity is a mechanism for cooperation based on shared moral systems and individual reputations. It assumes that members of a community routinely observe and assess each other and that they use this information to decide who is good or bad, and who deserves cooperation. When information is transmitted publicly, such that all community members agree on each other's reputation, previous research has highlighted eight crucial moral systems. These "leading-eight" strategies can maintain cooperation and resist invasion by defectors. However, in real populations individuals often hold their own private views of others. Once two individuals disagree about their opinion of some third party, they may also see its subsequent actions in a different light. Their opinions may further diverge over time. Herein, we explore indirect reciprocity when information transmission is private and noisy. We find that in the presence of perception errors, most leading-eight strategies cease to be stable. Even if a leading-eight strategy evolves, cooperation rates may drop considerably when errors are common. Our research highlights the role of reliable information and synchronized reputations to maintain stable moral systems.

11.
Commun Biol ; 1: 71, 2018.
Article in English | MEDLINE | ID: mdl-30271952

ABSTRACT

Because of the intrinsic randomness of the evolutionary process, a mutant with a fitness advantage has some chance to be selected but no certainty. Any experiment that searches for advantageous mutants will lose many of them due to random drift. It is therefore of great interest to find population structures that improve the odds of advantageous mutants. Such structures are called amplifiers of natural selection: they increase the probability that advantageous mutants are selected. Arbitrarily strong amplifiers guarantee the selection of advantageous mutants, even for very small fitness advantage. Despite intensive research over the past decade, arbitrarily strong amplifiers have remained rare. Here we show how to construct a large variety of them. Our amplifiers are so simple that they could be useful in biotechnology, when optimizing biological molecules, or as a diagnostic tool, when searching for faster dividing cells or viruses. They could also occur in natural population structures.

12.
J R Soc Interface ; 15(140)2018 03.
Article in English | MEDLINE | ID: mdl-29593089

ABSTRACT

We consider a class of students learning a language from a teacher. The situation can be interpreted as a group of child learners receiving input from the linguistic environment. The teacher provides sample sentences. The students try to learn the grammar from the teacher. In addition to just listening to the teacher, the students can also communicate with each other. The students hold hypotheses about the grammar and change them if they receive counter evidence. The process stops when all students have converged to the correct grammar. We study how the time to convergence depends on the structure of the classroom by introducing and evaluating various complexity measures. We find that structured communication between students, although potentially introducing confusion, can greatly reduce some of the complexity measures. Our theory can also be interpreted as applying to the scientific process, where nature is the teacher and the scientists are the students.


Subject(s)
Language , Learning/physiology , Models, Biological , Humans
13.
Sci Rep ; 7(1): 82, 2017 03 06.
Article in English | MEDLINE | ID: mdl-28250441

ABSTRACT

The fixation probability is the probability that a new mutant introduced in a homogeneous population eventually takes over the entire population. The fixation probability is a fundamental quantity of natural selection, and known to depend on the population structure. Amplifiers of natural selection are population structures which increase the fixation probability of advantageous mutants, as compared to the baseline case of well-mixed populations. In this work we focus on symmetric population structures represented as undirected graphs. In the regime of undirected graphs, the strongest amplifier known has been the Star graph, and the existence of undirected graphs with stronger amplification properties has remained open for over a decade. In this work we present the Comet and Comet-swarm families of undirected graphs. We show that for a range of fitness values of the mutants, the Comet and Comet-swarm graphs have fixation probability strictly larger than the fixation probability of the Star graph, for fixed population size and at the limit of large populations, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...