Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nano Res ; 16(4): 5098-5107, 2023.
Article in English | MEDLINE | ID: mdl-36570861

ABSTRACT

Magnetocontrollable droplet mobility on surfaces of both solids and simple fluids have been widely used in a wide range of applications. However, little is understood about the effect of the magnetic field on the wettability and mobility of droplets on structured fluids. Here, we report the manipulation of the dynamic behaviors of water droplets on a film of thermotropic liquid crystals (LCs). We find that the static wetting behavior and static friction of water droplets on a 4'-octyl-4-biphenylcarbonitrile (8CB) film strongly depend on the LC mesophases, and that a magnetic field caused no measurable change to these properties. However, we find that the droplet dynamics can be affected by a magnetic field as it slides on a nematic 8CB film, but not on isotropic 8CB, and is dependent on both the direction and strength of the magnetic field. By measuring the dynamic friction of a droplet sliding on a nematic 8CB film, we find that a magnetic field alters the internal orientational ordering of the 8CB which in turn affects its viscosity. We support this interpretation with a scaling argument using the LC magnetic coherence length that includes (i) the elastic energy from the long-range orientational ordering of 8CB and (ii) the free energy from the interaction between 8CB and a magnetic field. Overall, these results advance our understanding of droplet mobility on LC films and enable new designs for responsive surfaces that can manipulate the mobility of water droplets. Electronic Supplementary Material: Supplementary material (further details of the stability of LCIPS against water-induced dewetting, the interfacial tension and contact angle measurement using a goniometer, the estimation of the thickness of LC wrapping layer at air-water interface on droplets, SEM measurements, the average sliding velocity of a water droplet on 5CB, E7, silicone oil, and mineral oil films with and without a magnetic field, representative force diagram (Fd versus time) of a 3-µL water droplet moving at a speed of 0.1 mm/s on a nematic 8CB film, Fdynamic acting on 3 µL water droplets moving at speeds of 0.1-1 mm/s on an isotropic 8CB film, the calculated magnetic coherence length as a function of the magnitude of the magnetic field applied to the nematic LCIPS, and the apparent advancing and receding contact angles of a moving water droplet on nematic LCIPS as a function of time, and polarized light micrographs (top view) of a nematic 8CB film between two DMOAP-functionalized glass slides before and after applying a horizontal magnetic field) is available in the online version of this article at 10.1007/s12274-022-5318-y.

2.
Sci Adv ; 7(40): eabi7607, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34597134

ABSTRACT

The ability to control both the mobility and chemical compositions of microliter-scale aqueous droplets is an essential prerequisite for next-generation open surface microfluidics. Independently manipulating the chemical compositions of aqueous droplets without altering their mobility, however, remains challenging. In this work, we address this challenge by designing a class of open surface microfluidic platforms based on thermotropic liquid crystals (LCs). We demonstrate, both experimentally and theoretically, that the unique positional and orientational order of LC molecules intrinsically decouple cargo release functionality from droplet mobility via selective phase transitions. Furthermore, we build sodium sulfide­loaded LC surfaces that can efficiently precipitate heavy metal ions in sliding water droplets to final concentration less than 1 part per million for more than 500 cycles without causing droplets to become pinned. Overall, our results reveal that LC surfaces offer unique possibilities for the design of novel open surface fluidic systems with orthogonal functionalities.

3.
ACS Cent Sci ; 6(11): 1964-1970, 2020 Nov 25.
Article in English | MEDLINE | ID: mdl-33274273

ABSTRACT

Achiral building blocks forming achiral structures is a common occurrence in nature, while chirality emerging spontaneously from an achiral system is usually associated with important scientific phenomena. We report on the spontaneous chiral symmetry-breaking phenomena upon the topographic confinement of achiral lyotropic chromonic liquid crystals in periodically arranged micrometer scale air pillars. The anisotropic fluid arranges into chiral domains that depend on the arrangement and spacing of the pillars. We characterize the resulting domains by polarized optical microscopy, support their reconstruction by numerical calculations, and extend the findings with experiments, which include chiral dopants. Well-controlled and addressed chiral structures will be useful in potential applications like programmable scaffolds for living liquid crystals and as sensors for detecting chirality at the molecular level.

4.
Nat Commun ; 11(1): 59, 2020 Jan 02.
Article in English | MEDLINE | ID: mdl-31896755

ABSTRACT

Compared to isotropic liquids, orientational order of nematic liquid crystals makes their rheological properties more involved, and thus requires fine control of the flow parameters to govern the orientational patterns. In microfluidic channels with perpendicular surface alignment, nematics discontinuously transition from perpendicular structure at low flow rates to flow-aligned structure at high flow rates. Here we show how precise tuning of the driving pressure can be used to stabilize and manipulate a previously unresearched topologically protected chiral intermediate state which arises before the homeotropic to flow-aligned transition. We characterize the mechanisms underlying the transition and construct a phenomenological model to describe the critical behaviour and the phase diagram of the observed chiral flow state, and evaluate the effect of a forced symmetry breaking by introduction of a chiral dopant. Finally, we induce transitions on demand through channel geometry, application of laser tweezers, and careful control of the flow rate.

5.
Sci Adv ; 5(2): eaav4283, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30793033

ABSTRACT

Pure liquids in thermodynamic equilibrium are structurally homogeneous. In liquid crystals, flow and light pulses are used to create reconfigurable domains with polar order. Moreover, through careful engineering of concerted microfluidic flows and localized optothermal fields, it is possible to achieve complete control over the nucleation, growth, and shape of such domains. Experiments, theory, and simulations indicate that the resulting structures can be stabilized indefinitely, provided the liquids are maintained in a controlled nonequilibrium state. The resulting sculpted liquids could find applications in microfluidic devices for selective encapsulation of solutes and particles into optically active compartments that interact with external stimuli.

6.
Sci Adv ; 4(11): eaau8064, 2018 11.
Article in English | MEDLINE | ID: mdl-30480093

ABSTRACT

Topological defects in the orientational order that appear in thin slabs of a nematic liquid crystal, as seen in the standard schlieren texture, behave as a random quasi-two-dimensional system with strong optical birefringence. We present an approach to creating and controlling the defects using air pillars, trapped by micropatterned holes in the silicon substrate. The defects are stabilized and positioned by the arrayed air pillars into regular two-dimensional lattices. We explore the effects of hole shape, lattice symmetry, and surface treatment on the resulting lattices of defects and explain their arrangements by application of topological rules. Last, we show the formation of detailed kaleidoscopic textures after the system is cooled down across the nematic-smectic A phase transition, frustrating the defects and surrounding structures with the equal-layer spacing condition of the smectic phase.

7.
Proc Natl Acad Sci U S A ; 112(6): 1675-80, 2015 Feb 10.
Article in English | MEDLINE | ID: mdl-25624467

ABSTRACT

Nematic braids are reconfigurable knots and links formed by the disclination loops that entangle colloidal particles dispersed in a nematic liquid crystal. We focus on entangled nematic disclinations in thin twisted nematic layers stabilized by 2D arrays of colloidal particles that can be controlled with laser tweezers. We take the experimentally assembled structures and demonstrate the correspondence of the knot invariants, constructed graphs, and surfaces associated with the disclination loop to the physically observable features specific to the geometry at hand. The nematic nature of the medium adds additional topological parameters to the conventional results of knot theory, which couple with the knot topology and introduce order into the phase diagram of possible structures. The crystalline order allows the simplified construction of the Jones polynomial and medial graphs, and the steps in the construction algorithm are mirrored in the physics of liquid crystals.

8.
Phys Rev Lett ; 110(4): 048303, 2013 Jan 25.
Article in English | MEDLINE | ID: mdl-25166209

ABSTRACT

We explore the flow of a nematic liquid crystal in microfluidic channels with a rectangular cross section through experiments and numerical modeling. The flow profile and the liquid crystal orientational profile show three distinct regimes of weak, medium, and strong flow as the driving pressure is varied. These are identified by comparing polarizing optical microscopy experiments and numerical solutions of the nematofluidic equations of motion. The relative stability of the regimes is related to the de Gennes characteristic shear-flow lengths e(1) and e(2), together with the channel's aspect ratio w/d. Finally, we show that the liquid crystalline microfluidic flow can be fully steered from left to right of a simple microchannel by applying transverse temperature gradients.


Subject(s)
Liquid Crystals/chemistry , Microfluidics/methods
9.
Science ; 333(6038): 62-5, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21719671

ABSTRACT

Tying knots and linking microscopic loops of polymers, macromolecules, or defect lines in complex materials is a challenging task for material scientists. We demonstrate the knotting of microscopic topological defect lines in chiral nematic liquid-crystal colloids into knots and links of arbitrary complexity by using laser tweezers as a micromanipulation tool. All knots and links with up to six crossings, including the Hopf link, the Star of David, and the Borromean rings, are demonstrated, stabilizing colloidal particles into an unusual soft matter. The knots in chiral nematic colloids are classified by the quantized self-linking number, a direct measure of the geometric, or Berry's, phase. Forming arbitrary microscopic knots and links in chiral nematic colloids is a demonstration of how relevant the topology can be for the material engineering of soft matter.

10.
Phys Rev Lett ; 103(16): 167801, 2009 Oct 16.
Article in English | MEDLINE | ID: mdl-19905724

ABSTRACT

Using an atomic force microscopy, we have measured the separation dependence of the force between an atomically flat mica sheet and a micrometer-sized glass sphere immersed in the nematic liquid crystal. As the mica surface induces a strong parallel alignment and the treated glass sphere induces a strong perpendicular alignment on the liquid crystal, a repulsive force is observed due to the elastically deformed nematic liquid crystal. We observe that below a critical separation d(th) approximately 10 nm, the system undergoes a structural transition, thus relaxing the distortion. The results are interpreted within the eigenvalue exchange mechanism using the Landau-de Gennes tensorial approach.

11.
Science ; 313(5789): 954-8, 2006 Aug 18.
Article in English | MEDLINE | ID: mdl-16917058

ABSTRACT

The ability to generate regular spatial arrangements of particles is an important technological and fundamental aspect of colloidal science. We showed that colloidal particles confined to a few-micrometer-thick layer of a nematic liquid crystal form two-dimensional crystal structures that are bound by topological defects. Two basic crystalline structures were observed, depending on the ordering of the liquid crystal around the particle. Colloids inducing quadrupolar order crystallize into weakly bound two-dimensional ordered structure, where the particle interaction is mediated by the sharing of localized topological defects. Colloids inducing dipolar order are strongly bound into antiferroelectric-like two-dimensional crystallites of dipolar colloidal chains. Self-assembly by topological defects could be applied to other systems with similar symmetry.

SELECTION OF CITATIONS
SEARCH DETAIL
...