Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 907: 167677, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-37832674

ABSTRACT

Nitrogen cycling is essential to ecosystem functioning and the overall health of our planet. Ammonia, a nitrogen-containing product, as well as a nutrient, is promoted as a low-carbon fuel for the maritime sector, with spectacular production increase in plan. Similar to any other widespread fuels in the past, it is paramount to be prepared for the potential environmental impact of ammonia fuel. Here, through our preliminary calculations using literature data, we suggest that the amount of ammonia to be produced to fulfil the maritime energy need by 2050 may entail large alterations in global nitrogen cycling. Currently, the literature based on limited known cases of ammonia excess is insufficient to quantify the environmental impacts caused by the probable increase in bunkering ammonia release at global scale. With a few knowledge gaps identified, we call on the marine science community to investigate the potential environmental impact related to substantial ammonia excess, contributing new knowledge to a more environmentally sustainable future.

4.
Mar Pollut Bull ; 77(1-2): 380-95, 2013 Dec 15.
Article in English | MEDLINE | ID: mdl-24139643

ABSTRACT

The study presents a baseline variability and climatology study of measured hydrodynamic, water properties and some water quality parameters of West Johor Strait, Singapore at hourly-to-seasonal scales to uncover their dependency and correlation to one or more drivers. The considered parameters include, but not limited by sea surface elevation, current magnitude and direction, solar radiation and air temperature, water temperature, salinity, chlorophyll-a and turbidity. FFT (Fast Fourier Transform) analysis is carried out for the parameters to delineate relative effect of tidal and weather drivers. The group and individual correlations between the parameters are obtained by principal component analysis (PCA) and cross-correlation (CC) technique, respectively. The CC technique also identifies the dependency and time lag between driving natural forces and dependent water property and water quality parameters. The temporal variability and climatology of the driving forces and the dependent parameters are established at the hourly, daily, fortnightly and seasonal scales.


Subject(s)
Hydrodynamics , Seawater/chemistry , Water Quality/standards , Chlorophyll , Chlorophyll A , Environmental Monitoring , Meteorology , Oceans and Seas , Salinity , Seasons , Singapore , Spatio-Temporal Analysis , Temperature , Weather
5.
Mar Pollut Bull ; 62(6): 1198-206, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21481425

ABSTRACT

The occurrences of increased atmospheric nitrogen deposition (ADN) in Southeast Asia during smoke haze episodes have undesired consequences on receiving aquatic ecosystems. A successful prediction of episodic ADN will allow a quantitative understanding of its possible impacts. In this study, an artificial neural network (ANN) model is used to estimate atmospheric deposition of total nitrogen (TN) and organic nitrogen (ON) concentrations to coastal aquatic ecosystems. The selected model input variables were nitrogen species from atmospheric deposition, Total Suspended Particulates, Pollutant Standards Index and meteorological parameters. ANN models predictions were also compared with multiple linear regression model having the same inputs and output. ANN model performance was found relatively more accurate in its predictions and adequate even for high-concentration events with acceptable minimum error. The developed ANN model can be used as a forecasting tool to complement the current TN and ON analysis within the atmospheric deposition-monitoring program in the region.


Subject(s)
Air Pollution/statistics & numerical data , Atmosphere/chemistry , Environmental Monitoring/methods , Neural Networks, Computer , Nitrogen/analysis , Water Pollution, Chemical/statistics & numerical data , Air Pollutants/analysis , Computer Simulation , Environmental Monitoring/instrumentation , Eutrophication , Linear Models , Models, Chemical , Water Pollutants, Chemical/analysis
6.
Mar Pollut Bull ; 56(9): 1586-97, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18635240

ABSTRACT

Rapid urban and coastal developments often witness deterioration of regional seawater quality. As part of the management process, it is important to assess the baseline characteristics of the marine environment so that sustainable development can be pursued. In this study, artificial neural networks (ANNs) were used to predict and forecast quantitative characteristics of water bodies. The true power and advantage of this method lie in its ability to (1) represent both linear and non-linear relationships and (2) learn these relationships directly from the data being modeled. The study focuses on Singapore coastal waters. The ANN model is built for quick assessment and forecasting of selected water quality variables at any location in the domain of interest. Respective variables measured at other locations serve as the input parameters. The variables of interest are salinity, temperature, dissolved oxygen, and chlorophyll-alpha. A time lag up to 2Delta(t) appeared to suffice to yield good simulation results. To validate the performance of the trained ANN, it was applied to an unseen data set from a station in the region. The results show the ANN's great potential to simulate water quality variables. Simulation accuracy, measured in the Nash-Sutcliffe coefficient of efficiency (R(2)), ranged from 0.8 to 0.9 for the training and overfitting test data. Thus, a trained ANN model may potentially provide simulated values for desired locations at which measured data are unavailable yet required for water quality models.


Subject(s)
Environmental Monitoring/methods , Forecasting/methods , Models, Theoretical , Neural Networks, Computer , Seawater/chemistry , Water Pollution/analysis , Computer Simulation , Singapore
SELECTION OF CITATIONS
SEARCH DETAIL
...