Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
J Med Chem ; 67(12): 10135-10151, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38857067

ABSTRACT

Yohimbine, a natural indole alkaloid and a nonselective adrenoceptor antagonist, possesses potential benefits in treating inflammatory disorders and sepsis. Nevertheless, its broader clinical use faces challenges due to its low receptor selectivity. A structure-activity relationship study of novel yohimbine analogues identified amino esters of yohimbic acid as potent and selective ADRA2A antagonists. Specifically, amino ester 4n, in comparison to yohimbine, showed a 6-fold higher ADRA1A/ADRA2A selectivity index (SI > 556 for 4n) and a 25-fold higher ADRA2B/ADRA2A selectivity index. Compound 4n also demonstrated high plasma and microsomal stability, moderate-to-low membrane permeability determining its limited ability to cross the blood-brain barrier, and negligible toxicity on nontumor normal human dermal fibroblasts. Compound 4n represents an important complementary pharmacological tool to study the involvement of adrenoceptor subtypes in pathophysiologic conditions such as inflammation and sepsis and a novel candidate for further preclinical development to treat ADRA2A-mediated pathologies.


Subject(s)
Adrenergic alpha-2 Receptor Antagonists , Drug Design , Receptors, Adrenergic, alpha-2 , Yohimbine , Humans , Receptors, Adrenergic, alpha-2/metabolism , Yohimbine/pharmacology , Yohimbine/chemistry , Structure-Activity Relationship , Adrenergic alpha-2 Receptor Antagonists/pharmacology , Adrenergic alpha-2 Receptor Antagonists/chemistry , Adrenergic alpha-2 Receptor Antagonists/chemical synthesis , Animals
2.
ACS Omega ; 9(18): 20557-20570, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38737052

ABSTRACT

A series of quinolino-fused 7-deazapurine (pyrimido[5',4':4,5]pyrrolo[3,2-f]quinoline) ribonucleosides were designed and synthesized. The synthesis of the key 11-chloro-pyrimido[5',4':4,5]pyrrolo[3,2-f]quinoline was based on the Negishi cross-coupling of iodoquinoline with zincated 4,6-dichloropyrimidine followed by azidation and thermal or photochemical cyclization. Vorbrüggen glycosylation of the tetracyclic heterocycle followed by cross-coupling or substitution reactions at position 11 gave the desired set of final nucleosides that showed moderate to weak cytostatic activity and fluorescent properties. The corresponding fused adenosine derivative was converted to the triphosphate and successfully incorporated to RNA using in vitro transcription with T7 RNA polymerase.

3.
J Med Chem ; 66(10): 6652-6681, 2023 05 25.
Article in English | MEDLINE | ID: mdl-37134237

ABSTRACT

Purine nucleoside phosphorylase (PNP) is a well-known molecular target with potential therapeutic applications in the treatment of T-cell malignancies and/or bacterial/parasitic infections. Here, we report the design, development of synthetic methodology, and biological evaluation of a series of 30 novel PNP inhibitors based on acyclic nucleoside phosphonates bearing a 9-deazahypoxanthine nucleobase. The strongest inhibitors exhibited IC50 values as low as 19 nM (human PNP) and 4 nM (Mycobacterium tuberculosis (Mt) PNP) and highly selective cytotoxicity toward various T-lymphoblastic cell lines with CC50 values as low as 9 nM. No cytotoxic effect was observed on other cancer cell lines (HeLa S3, HL60, HepG2) or primary PBMCs for up to 10 µM. We report the first example of the PNP inhibitor exhibiting over 60-fold selectivity for the pathogenic enzyme (MtPNP) over hPNP. The results are supported by a crystallographic study of eight enzyme-inhibitor complexes and by ADMET profiling in vitro and in vivo.


Subject(s)
Enzyme Inhibitors , Purine-Nucleoside Phosphorylase , Humans , Purine-Nucleoside Phosphorylase/metabolism , Enzyme Inhibitors/chemistry , Crystallography
4.
J Med Chem ; 64(10): 6706-6719, 2021 05 27.
Article in English | MEDLINE | ID: mdl-34006103

ABSTRACT

Cryptococcosis is an invasive infection that accounts for 15% of AIDS-related fatalities. Still, treating cryptococcosis remains a significant challenge due to the poor availability of effective antifungal therapies and emergence of drug resistance. Interestingly, protease inhibitor components of antiretroviral therapy regimens have shown some clinical benefits in these opportunistic infections. We investigated Major aspartyl peptidase 1 (May1), a secreted Cryptococcus neoformans protease, as a possible target for the development of drugs that act against both fungal and retroviral aspartyl proteases. Here, we describe the biochemical characterization of May1, present its high-resolution X-ray structure, and provide its substrate specificity analysis. Through combinatorial screening of 11,520 compounds, we identified a potent inhibitor of May1 and HIV protease. This dual-specificity inhibitor exhibits antifungal activity in yeast culture, low cytotoxicity, and low off-target activity against host proteases and could thus serve as a lead compound for further development of May1 and HIV protease inhibitors.


Subject(s)
Antifungal Agents/chemistry , Aspartic Acid Proteases/antagonists & inhibitors , Cryptococcus neoformans/enzymology , Fungal Proteins/antagonists & inhibitors , Antifungal Agents/metabolism , Antifungal Agents/pharmacology , Aspartic Acid Proteases/genetics , Aspartic Acid Proteases/metabolism , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Drug Evaluation, Preclinical , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungi/drug effects , HIV/enzymology , HIV Protease/chemistry , HIV Protease/metabolism , Molecular Dynamics Simulation , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Structure-Activity Relationship , Substrate Specificity
5.
ACS Infect Dis ; 7(4): 917-926, 2021 04 09.
Article in English | MEDLINE | ID: mdl-33769794

ABSTRACT

Human African Trypanosomiasis caused by Trypanosoma brucei species is one of the most damaging neglected tropical diseases. While the number of newly diagnosed cases per year is record low, there is still high interest in the development of new antitrypanosomal agents in case of resistance to currently used drugs and their combinations, and to replace drugs with serious side effects. We report a series of 7-methyl-7-deazapurine (5-methyl-pyrrolo[2,3-d]pyrimidine) ribonucleosides bearing alkyl, methylsulfanyl, methylamino, or diverse alkoxy groups at position 6 that was prepared through glycosylation of 6-chloro-7-methyl-7-deazapurine followed by nucleophilic substitutions or cross-coupling reactions at position 6 and deprotection. Most of the title nucleosides displayed significant activity against Trypanosoma brucei brucei and T. b. gambiense at submicromolar or nanomolar concentrations and low cytotoxicity and thus represent promising candidates for further development.


Subject(s)
Antiprotozoal Agents , Ribonucleosides , Humans , Nucleosides/pharmacology , Purines
6.
ACS Omega ; 5(40): 26278-26286, 2020 Oct 13.
Article in English | MEDLINE | ID: mdl-33073155

ABSTRACT

Two isomeric sets of 4-substituted pyridopyrrolopyrimidine nucleobases were prepared through nucleophilic substitutions or cross-coupling reactions of 4-chloropyridopyrrolopyrimidines. The corresponding 4-amino-pyridopyrrolopyrimidines were glycosylated with 5-O-tritylribose using the modified Mitsunobu protocol. Several examples of the title heterocycles showed blue or green fluorescence. Testing of the pyridopyrrolopyrimidine nucleobases for the cytotoxic effect revealed micromolar activity of 4-benzofuryl derivatives in both series, preferentially in multidrug-resistant cancers.

7.
J Org Chem ; 85(16): 10539-10551, 2020 08 21.
Article in English | MEDLINE | ID: mdl-32692916

ABSTRACT

A series of 8-substituted 1-methyl-1,4-dihydropyrazolo[3',4':4,5]pyrrolo[2,3-d]pyrimidine (methylpyrazolo-fused 7-deazapurine) ribonucleosides have been designed and synthesized. Two synthetic approaches to the key heterocyclic aglycon 7, (i) a six-step classical heterocyclization starting from 5-chloro-1-methyl-4-nitropyrazole and (ii) a three-step cross-coupling and cyclization approach starting from the zincated 4,6-dichloropyrimidine, gave comparable total yields of 18% vs 13%. The glycosylation of 7 was attempted by three different methods but only the Vorbrüggen silyl-base protocol was efficient and stereoselective to give desired ß-anomeric nucleoside intermediate 17A. Its nucleophilic substitutions or cross-coupling reactions at position 8 and deprotection of the sugar moiety gave eight derivatives of pyrazolo-fused deazapurine ribonucleosides, some of which were weakly fluorescent. Methyl, amino, and methylsulfanyl derivatives exerted submicromolar cytotoxic effects in vitro against a panel of cancer and leukemia cell lines as well as antiviral effects against hepatitis C virus in the replicon assay.


Subject(s)
Nucleosides , Ribonucleosides , Antiviral Agents/pharmacology , Purines/pharmacology , Ribonucleosides/pharmacology
9.
J Med Chem ; 61(20): 9347-9359, 2018 10 25.
Article in English | MEDLINE | ID: mdl-30281308

ABSTRACT

Three series of isomeric pyrrolo- and furo-fused 7-deazapurine ribonucleosides were synthesized and screened for cytostatic and antiviral activity. The synthesis was based on heterocyclizations of hetaryl-azidopyrimidines to form the tricyclic heterocyclic bases, followed by glycosylation and final derivatizations through cross-coupling reactions or nucleophilic substitutions. The pyrrolo[2',3':4,5]pyrrolo[2,3- d]pyrimidine and furo[2',3':4,5]pyrrolo[2,3- d]pyrimidine ribonucleosides were found to be potent cytostatics, whereas the isomeric pyrrolo[3',2',4,5]pyrrolo[2,3- d]pyrimidine nucleosides were inactive. The most active were the methyl, methoxy, and methylsulfanyl derivatives exerting submicromolar cytostatic effects and good selectivity toward cancer cells. We have shown that the nucleosides are activated by intracellular phosphorylation and the nucleotides get incorporated to both RNA and DNA, where they cause DNA damage. They represent a new type of promising candidates for preclinical development toward antitumor agents.


Subject(s)
Furans/chemistry , Purines/chemistry , Pyrroles/chemistry , Ribonucleosides/chemical synthesis , Ribonucleosides/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Cell Line, Tumor , Chemistry Techniques, Synthetic , Humans , Ribonucleosides/chemistry , Structure-Activity Relationship
10.
J Med Chem ; 60(6): 2411-2424, 2017 03 23.
Article in English | MEDLINE | ID: mdl-28221790

ABSTRACT

Two isomeric series of new thieno-fused 7-deazapurine ribonucleosides (derived from 4-substituted thieno[2',3':4,5]pyrrolo[2,3-d]pyrimidines and thieno[3',2':4,5]pyrrolo[2,3-d]pyrimidines) were synthesized by a sequence involving Negishi coupling of 4,6-dichloropyrimidine with iodothiophenes, nucleophilic azidation, and cyclization of tetrazolopyrimidines, followed by glycosylation and cross-couplings or nucleophilic substitutions at position 4. Most nucleosides (from both isomeric series) exerted low micromolar or submicromolar in vitro cytostatic activities against a broad panel of cancer and leukemia cell lines and some antiviral activity against HCV. The most active were the 6-methoxy, 6-methylsulfanyl, and 6-methyl derivatives, which were highly active to cancer cells and less toxic or nontoxic to fibroblasts.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Purines/chemistry , Purines/pharmacology , Antineoplastic Agents/chemical synthesis , Antiviral Agents/chemical synthesis , Cell Line, Tumor , Hepacivirus/drug effects , Hepatitis C/drug therapy , Humans , Neoplasms/drug therapy , Purines/chemical synthesis , Ribonucleosides/chemical synthesis , Ribonucleosides/chemistry , Ribonucleosides/pharmacology
11.
J Med Chem ; 57(3): 1097-110, 2014 Feb 13.
Article in English | MEDLINE | ID: mdl-24397620

ABSTRACT

A series of 80 7-(het)aryl- and 7-ethynyl-7-deazapurine ribonucleosides bearing a methoxy, methylsulfanyl, methylamino, dimethylamino, methyl, or oxo group at position 6, or 2,6-disubstituted derivatives bearing a methyl or amino group at position 2, were prepared, and the biological activity of the compounds was studied and compared with that of the parent 7-(het)aryl-7-deazaadenosine series. Several of the compounds, in particular 6-substituted 7-deazapurine derivatives bearing a furyl or ethynyl group at position 7, were significantly cytotoxic at low nanomolar concentrations whereas most were much less potent or inactive. Promising activity was observed with some compounds against Mycobacterium bovis and also against hepatitis C virus in a replicon assay.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Antiviral Agents/chemical synthesis , Cytostatic Agents/chemical synthesis , Hepacivirus/drug effects , Purine Nucleosides/chemical synthesis , Ribonucleosides/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Cell Line, Tumor , Cytostatic Agents/chemistry , Cytostatic Agents/pharmacology , Cytotoxins/chemical synthesis , Cytotoxins/chemistry , Cytotoxins/pharmacology , Hepacivirus/physiology , Humans , Mycobacterium bovis/drug effects , Purine Nucleosides/chemistry , Purine Nucleosides/pharmacology , Ribonucleosides/chemistry , Ribonucleosides/pharmacology , Structure-Activity Relationship , Virus Replication/drug effects
12.
Antimicrob Agents Chemother ; 58(2): 664-71, 2014.
Article in English | MEDLINE | ID: mdl-24145524

ABSTRACT

Adenylate cyclase toxin (ACT) is the key virulence factor of Bordetella pertussis that facilitates its invasion into the mammalian body. 9-[2-(Phosphonomethoxy)ethyl]adenine diphosphate (PMEApp), the active metabolite of the antiviral drug bis(POM)PMEA (adefovir dipivoxil), has been shown to inhibit ACT. The objective of this study was to evaluate six novel amidate prodrugs of PMEA, both phenyloxy phosphonamidates and phosphonodiamidates, for their ability to inhibit ACT activity in the J774A.1 macrophage cell line. The two phenyloxy phosphonamidate prodrugs exhibited greater inhibitory activity (50% inhibitory concentration [IC50] = 22 and 46 nM) than the phosphonodiamidates (IC50 = 84 to 3,960 nM). The inhibitory activity of the prodrugs correlated with their lipophilicity and the degree of their hydrolysis into free PMEA in J774A.1 cells. Although the prodrugs did not inhibit ACT as effectively as bis(POM)PMEA (IC50 = 6 nM), they were significantly less cytotoxic. Moreover, they all reduced apoptotic effects of ACT and prevented an ACT-induced elevation of intracellular [Ca(2+)]i. The amidate prodrugs were less susceptible to degradation in Caco-2 cells compared to bis(POM)PMEA, while they exerted good transepithelial permeability in this assay. As a consequence, a large amount of intact amidate prodrug is expected to be available to target macrophages in vivo. This feature makes nontoxic amidate prodrugs attractive candidates for further investigation as novel antimicrobial agents.


Subject(s)
Adenine/analogs & derivatives , Adenylate Cyclase Toxin/antagonists & inhibitors , Anti-Bacterial Agents/pharmacology , Bordetella pertussis/drug effects , Prodrugs/pharmacology , Adenine/metabolism , Adenine/pharmacology , Adenylate Cyclase Toxin/metabolism , Animals , Anti-Bacterial Agents/metabolism , Bordetella pertussis/growth & development , Bordetella pertussis/pathogenicity , Caco-2 Cells , Cell Line, Tumor , Cell Survival/drug effects , Humans , Inhibitory Concentration 50 , Macrophages/drug effects , Macrophages/microbiology , Mice , Microbial Sensitivity Tests , Organophosphonates/pharmacology , Prodrugs/metabolism
13.
Bioorg Med Chem ; 21(17): 5362-72, 2013 Sep 01.
Article in English | MEDLINE | ID: mdl-23827234

ABSTRACT

Two series of new 4-aminopyrimido[4,5-b]indole ribonucleosides bearing phenyl or hetaryl group at position 5 or 6 have been prepared by Suzuki or Stille cross-coupling reactions employing X-Phos ligand with (het)arylboronic acids or stannanes. A series of 4-substituted nucleosides has been also prepared by Pd-catalyzed cross-couplings or nucleophilic substitution. Some of these compounds displayed moderate antiviral activities against HCV and dengue viruses.


Subject(s)
Adenosine/analogs & derivatives , Antiviral Agents/chemical synthesis , Indoles/chemistry , Ribonucleosides/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/toxicity , Catalysis , Cell Line, Tumor , Cell Survival/drug effects , Dengue Virus/drug effects , HL-60 Cells , HeLa Cells , Hep G2 Cells , Hepacivirus/drug effects , Humans , Palladium/chemistry , Ribonucleosides/pharmacology , Ribonucleosides/toxicity
14.
Biochem Pharmacol ; 75(4): 965-72, 2008 Feb 15.
Article in English | MEDLINE | ID: mdl-18045574

ABSTRACT

DNA methylation inhibitors are being extensively studied as potential anticancer agents. In the present study, we compared the capability of alpha anomer of 5-aza-2'-deoxycytidine (alpha-5-azadCyd) to induce down-regulation of hTERT expression in HL-60 cells with other nucleoside analogs that act as DNA methylation inhibitors: beta-5-azadCyd (decitabine), (S)-9-(2,3-dihydroxypropyl)adenine [(S)-DHPA], isobutyl ester of (R,S)-3-(adenin-9-yl)-2-hydroxypropanoic acid [(R,S)-AHPA-ibu] and prospective DNA methylation inhibitors (S)-1-[3-hydroxy-2-(phosphonomethoxy)propyl]-5-azacytosine [(S)-HPMPazaC] and 5-fluoro-zebularine (F-PymRf). Exposure to alpha-5-azadCyd induced the down-regulation of hTERT expression in low micromolar concentrations (0.05-50 microM). A more cytotoxic beta anomer caused a transient up-regulation of hTERT and a subsequent reduction in hTERT mRNA levels at concentrations more than 10 times below its GIC50 value. In this respect, (S)-DHPA and (R,S)-AHPA-ibu were less efficient, since a similar effect was achieved at concentrations above their GIC(50). In contrast, F-PymRf treatment resulted in up to a three-fold induction of hTERT expression within a broad range of concentrations. In all cases, the down-regulation of hTERT expression was concentration-dependent. The correlation was found between c-myc overexpression and transiently elevated hTERT expression after treatment with all tested compounds except for alpha-5-azadCyd and (S)-HPMPazaC. Although the primary task of hypomethylating agents in anticancer therapy lies in reactivation of silenced tumour-suppressor genes, the inhibition of hTERT expression might also be a fruitful clinical effect of this approach.


Subject(s)
Antimetabolites, Antineoplastic/pharmacology , Azacitidine/analogs & derivatives , RNA, Messenger/biosynthesis , Telomerase/biosynthesis , Azacitidine/chemistry , Azacitidine/pharmacology , DNA/metabolism , DNA Methylation/drug effects , Decitabine , Dose-Response Relationship, Drug , Down-Regulation , HL-60 Cells , Humans , Reverse Transcriptase Polymerase Chain Reaction , S-Adenosylhomocysteine/metabolism , S-Adenosylmethionine/metabolism , Stereoisomerism
15.
J Med Chem ; 50(24): 6016-23, 2007 Nov 29.
Article in English | MEDLINE | ID: mdl-17963370

ABSTRACT

Thymidine phosphorylase plays an important role in angiogenesis, which is an attractive target for therapy of cancer and other diseases. In our continuous effort to develop novel inhibitors of thymidine phosphorylase, we have discovered that 6-halouracils substituted at position C5 by certain hydrophobic groups exhibit significant inhibitory activity against this enzyme. The most potent compounds bear a five- or six-membered cyclic substituent containing a pi-electron system at C5 and a chlorine atom attached at C6. 6-Chloro-5-cyclopent-1-en-1-yluracil 7a is the most efficient derivative in this study, with Ki = 0.20 +/- 0.03 microM (Ki/dThdKm = 0.0017) for thymidine phosphorylase expressed in V79 cells and Ki = 0.29 +/- 0.04 microM (Ki/dThdKm = 0.0024) for the enzyme purified from placenta.


Subject(s)
Angiogenesis Inhibitors/chemical synthesis , Thymidine Phosphorylase/antagonists & inhibitors , Uracil/analogs & derivatives , Uracil/chemical synthesis , Angiogenesis Inhibitors/chemistry , Humans , Kinetics , Models, Molecular , Structure-Activity Relationship , Uracil/chemistry
17.
Biochem Pharmacol ; 70(6): 894-900, 2005 Sep 15.
Article in English | MEDLINE | ID: mdl-16026762

ABSTRACT

Diphosphates of the antiviral acyclic nucleoside phosphonates (ANPs) were evaluated in telomeric repeat amplification protocol (TRAP) for their ability to inhibit the extension of telomeres by human telomerase. Extracts from human leukaemia HL-60 cells were used as a source of the enzyme. Data show that the most effective compound studied was the guanine derivative PMEGpp (IC50 12.7+/-0.5 micromolL(-1) at 125 micromolL(-1) deoxynucleoside triphosphates (dNTPs)). The inhibitory effects of other PME, PMP and HPMP diphosphates on telomerase reverse transcriptase decreased in the order: (R)-PMPGpp>(R)-HPMPGpp>PMEDAPpp>(S)-PMPGpp>(S)-HPMPApp>PMEO-DAPypp>(R)-6-cyprPMPDAPpp>(R)-PMPApp>(R)-PMPDAPpp> or =PMEApp> or =PMECpp>PMETpp>(S)-PMPApp approximately 6-Me2PMEDAPpp. These results are consistent with the observed antineoplastic activities of the parental guanine (PMEG) and 2,6-diaminopurine (PMEDAP) PME-derivatives. Moreover, structure-activity relationship indicates enantioselectivity of some of these human telomerase inhibitors: (R)-isomers of the PMP-derivatives possess stronger inhibitory potency towards the enzyme than (S)-isomers. The data may contribute to the rational design of telomerase inhibitors based on the structure of acyclic nucleotide analogues.


Subject(s)
Organophosphonates/pharmacology , Telomerase/antagonists & inhibitors , Base Sequence , DNA Primers , HL-60 Cells , Humans
18.
Biochem Pharmacol ; 69(10): 1517-21, 2005 May 15.
Article in English | MEDLINE | ID: mdl-15857616

ABSTRACT

A series of thymine phosphonomethoxyalkyl derivatives were evaluated for their ability to inhibit thymidine phosphorylase (dThdPase) purified from rat spontaneous T-cell lymphoma. A kinetic study of thymidine phosphorolysis catalyzed by dThdPase was performed with thymidine and/or inorganic phosphate as substrates. Data show that the substantial inhibitory effect of these acyclic nucleotide analogues is decreasing in the order of (R)-FPMPT>(S)-FPMPT>or=(R)-HPMPT>(S)-PMPT>(S)-HPMPT>PMET>or=(R)-PMPT. The inhibitory potency (K(i)/(dThd)K(m)) of the most efficient inhibitors from this series against T-cell lymphoma enzyme is 0.0026 for (R)-FPMPT and 0.0048 for (S)-FPMPT. The studied compounds do not inhibit Escherichia coli and human enzyme and possess lower inhibitory potency against rat liver thymidine phosphorylase.


Subject(s)
Enzyme Inhibitors/pharmacology , Lymphoma, T-Cell/enzymology , Organophosphonates/pharmacology , Thymidine Phosphorylase/antagonists & inhibitors , Thymine/analogs & derivatives , Thymopoietins/pharmacology , Animals , Rats , Rats, Sprague-Dawley , Stereoisomerism , Structure-Activity Relationship , Thymine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...