Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Struct Biol ; : 108105, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38852682

ABSTRACT

Human serum albumin (HSA) is the most prevalent plasma protein in the human body, accounting for 60 % of the total plasma protein. HSA plays a major pharmacokinetic function, serving as a facilitator in the distribution of endobiotics and xenobiotics within the organism. In this paper we report the cryoEM structures of HSA in the apo form and in complex with two ligands (salicylic acid and teniposide) at a resolution of 3.5, 3.7 and 3.4 Å, respectively. We expand upon previously published work and further demonstrate that sub-4 Šmaps of ∼60 kDa proteins can be routinely obtained using a 200 kV microscope, employing standard workflows. Most importantly, these maps allowed for the identification of small molecule ligands, emphasizing the practical applicability of this methodology and providing a starting point for subsequent computational modeling and in silico optimization.

2.
Eur J Pharm Sci ; 196: 106761, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38580169

ABSTRACT

Inspired by nature, tissue engineering aims to employ intricate mechanisms for advanced clinical interventions, unlocking inherent biological potential and propelling medical breakthroughs. Therefore, medical, and pharmaceutical fields are growing interest in tissue and organ replacement, repair, and regeneration by this technology. Three primary mechanisms are currently used in tissue engineering: transplantation of cells (I), injection of growth factors (II) and cellular seeding in scaffolds (III). However, to develop scaffolds presenting highest potential, reinforcement with polymeric materials is growing interest. For instance, natural and synthetic polymers can be used. Regardless, chitosan and keratin are two biopolymers presenting great biocompatibility, biodegradability and non-antigenic properties for tissue engineering purposes offering restoration and revitalization. Therefore, combination of chitosan and keratin has been studied and results exhibit highly porous scaffolds providing optimal environment for tissue cultivation. This review aims to give an historical as well as current overview of tissue engineering, presenting mechanisms used and polymers involved in the field.

3.
Small ; : e2307618, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38308358

ABSTRACT

This study aims to compare the potential of Polyethylene glycol (PEG-free and PEG-based self-emulsifying drug delivery systems (SEDDS) for the oral administration of insulin glargine (IG). Hydrophobic ion pairs (HIPs) of IG are formed using various counterions. HIPs are assessed for log P octanol/water and dissociation behavior. They are incorporated into SEDDS based on polyglycerol (PG) and zwitterionic surfactant (ZW) using response surface methodology and compared to conventional PEG-SEDDS in size, stability, and log D SEDDS/release medium . Oral IG bioavailability in PG/ZW-SEDDS and PEG-SEDDS is evaluated in rats. Among the various counterions studied, IG-BIS (bis(isotridecyl)sulfosuccinate) HIPs demonstrated the highest log P and an improved dissociation profile. PG/ZW-SEDDS and PEG-SEDDS have similar ≈40 nm sizes and are stable over 24 h. Both formulations have log D > 4 in water and >2 in 50 mM phosphate buffer pH 6.8. PG/ZW-SEDDS yielded an oral bioavailability of 2.13 ± 0.66% for IG, while the employment of PEG-SEDDS resulted in an oral bioavailability of 1.15 ± 0.35%. This study highlights the prospective utilization of PEG-free SEDDS involving the concurrent application of PG and ZW surfactants, an alternative to conventional PEG surfactants, for improved oral therapeutic (poly) peptide delivery.

4.
Article in English | MEDLINE | ID: mdl-38289467

ABSTRACT

The aim of this study was to design surfactants based on histidine (His) for hydrophobic ion-pairing and evaluate their safety and efficacy. Lauryl, palmitoyl and oleyl alcohol, as well as 2-hexyl-1-decanol were converted into surfactants with histidine as head-group via esterification. The synthesized His-surfactants were characterized regarding pKa, critical micellar concentration (CMC), biodegradability, toxicity on Caco-2 cells, and ability to provide endosomal escape. Furthermore, the suitability of these agents to be employed as counterions in hydrophobic ion pairing was evaluated. Chemical structures were confirmed by 1H-NMR, FT-IR, and MS. The synthesized surfactants showed pKa values ranging from 4.9 to 6.0 and CMC values in the range of 0.3 to 7.0 mM. Their biodegradability was proven by enzymatic cleavage within 24 h. Below the CMC, His-surfactants did not show cytotoxic effects on Caco-2 cells (cell viability > 80%). All His-surfactants showed the ability to provide endosomal escape in a pH-dependent manner in the range of 5.2 to 6.8. Complexes formed between His-surfactants and heparin or plasmid DNA (pDNA) via hydrophobic ion pairing showed at least 100-fold higher lipophilicity than the correspondent model drugs. According to these results, His-surfactants might be a promising safe tool for delivering hydrophilic macromolecular drugs and nucleic acids.

5.
Lancet Neurol ; 23(1): 37-45, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38101901

ABSTRACT

BACKGROUND: Converging lines of evidence suggest that microglia are relevant to Parkinson's disease pathogenesis, justifying exploration of therapeutic agents thought to attenuate pathogenic microglial function. We sought to test the safety and efficacy of NLY01-a brain-penetrant, pegylated, longer-lasting version of exenatide (a glucagon-like peptide-1 receptor agonist) that is believed to be anti-inflammatory via reduction of microglia activation-in Parkinson's disease. METHODS: We report a 36-week, randomised, double-blind, placebo-controlled study of NLY01 in participants with early untreated Parkinson's disease conducted at 58 movement disorder clinics in the USA. Participants meeting UK Brain Bank or Movement Disorder Society research criteria for Parkinson's disease were randomly allocated (1:1:1) to one of two active treatment groups (2·5 mg or 5·0 mg NLY01) or matching placebo, based on a central computer-generated randomisation scheme using permuted block randomisation with varying block sizes. All participants, investigators, coordinators, study staff, and sponsor personnel were masked to treatment assignments throughout the study. The primary efficacy endpoint for the primary analysis population (defined as all randomly assigned participants who received at least one dose of study drug) was change from baseline to week 36 in the sum of Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS) parts II and III. Safety was assessed in the safety population (all randomly allocated participants who received at least one dose of the study drug) with documentation of adverse events, vital signs, electrocardiograms, clinical laboratory assessments, physical examination, and scales for suicidality, sleepiness, impulsivity, and depression. This trial is complete and registered at ClinicalTrials.gov, NCT04154072. FINDINGS: The study took place between Jan 28, 2020, and Feb 16, 2023. 447 individuals were screened, of whom 255 eligible participants were randomly assigned (85 to each study group). One patient assigned to placebo did not receive study treatment and was not included in the primary analysis. At 36 weeks, 2·5 mg and 5·0 mg NLY01 did not differ from placebo with respect to change in sum scores on MDS-UPDRS parts II and III: difference versus placebo -0·39 (95% CI -2·96 to 2·18; p=0·77) for 2·5 mg and 0·36 (-2·28 to 3·00; p=0·79) for 5·0 mg. Treatment-emergent adverse events were similar across groups (reported in 71 [84%] of 85 patients on 2·5 mg NLY01, 79 [93%] of 85 on 5·0 mg, and 73 [87%] of 84 on placebo), with gastrointestinal disorders the most commonly observed class in active groups (52 [61%] for 2·5 mg, 64 [75%] for 5·0 mg, and 30 [36%] for placebo) and nausea the most common event overall (33 [39%] for 2·5 mg, 49 [58%] for 5·0 mg, and 16 [19%] for placebo). No deaths occurred during the study. INTERPRETATION: NLY01 at 2·5 and 5·0 mg was not associated with any improvement in Parkinson's disease motor or non-motor features compared with placebo. A subgroup analysis raised the possibility of motor benefit in younger participants. Further study is needed to determine whether these exploratory observations are replicable. FUNDING: D&D Pharmatech-Neuraly.


Subject(s)
Exenatide , Glucagon-Like Peptide-1 Receptor Agonists , Parkinson Disease , Humans , Double-Blind Method , Parkinson Disease/drug therapy , Parkinson Disease/complications , Treatment Outcome , Exenatide/analogs & derivatives , Exenatide/therapeutic use , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor Agonists/therapeutic use
6.
ACS Biomater Sci Eng ; 9(12): 6797-6804, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37996083

ABSTRACT

Nanoemulsions can be tuned toward enhanced gastro-intestinal retention time by incorporating thiolated surfactants into their surface. Tailoring the chemical reactivity of the thiol headgroup has major influence on mucoadhesive features of the nanoemulsion. Two generations of thiolated surfactants were synthetically derived from PEG-40-stearate featuring either a free thiol group or an S-protected thiol group. The surfactants were characterized regarding critical micelle concentration (CMC), hemolytic activity, and cytotoxicity. Subsequently, they were incorporated into nanoemulsions and the resulting nanoemulsions were characterized regarding particle size, polydispersity index (PDI), zeta potential, and time-dependent stability. Afterward, mucosal interactions as well as mucoadhesion on porcine intestinal mucosa were investigated. Successful synthesis of Cysteine-PEG-40-stearate (CYS-PEG-40-stearate) and MNA-Cysteine-PEG-40-stearate (MNA-CYS-PEG-40-stearate) was confirmed by 1H NMR spectroscopy. Both chemical modifications led to slightly elevated CMC values while preserving low cytotoxicity and hemotoxicity. Incorporation into nanoemulsions had minor influence on overall physical particle characteristics, while interactions with mucus and mucoadhesiveness of the nanoemulsions were drastically improved resulting in the rank order PEG-40-stearate < CYS-PEG-40-stearate < MNA-CYS-PEG-40-stearate. Accordingly, thiolated surfactants, especially S-protected derivatives, are versatile tools to generate highly mucoadhesive nanoemulsions.


Subject(s)
Cysteine , Drug Delivery Systems , Animals , Swine , Cysteine/chemistry , Drug Delivery Systems/methods , Surface-Active Agents/pharmacology , Stearates , Sulfhydryl Compounds/chemistry
7.
Adv Healthc Mater ; 12(31): e2302034, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37696266

ABSTRACT

Alternative methods to hydrophobic ion pairing for the formation of lipophilic complexes of peptide drugs to incorporate them in lipid-based nanocarriers such as self-emulsifying drug delivery systems (SEDDS) for oral administration are highly on demand. Such an alternative might be reverse micelles. Within this study, SEDDS containing dry reverse micelles (dRMsPMB ) formed with an anionic (sodium docusate; AOT), cationic (dimethyl-dioctadecyl-ammonium bromide; DODAB), amphoteric (soy lecithin; SL), or non-ionic (polysorbate 85; P85) surfactant loaded with the model peptide drug polymyxin B (PMB) are developed. They are characterized regarding size, payload, release kinetics, cellular uptake, and peptide activity. SEDDS exhibit sizes from 22.2 ± 1.7 (AOT-SEDDS-dRMsPMB ) to 61.7 ± 3.2 nm (P85-SEDDS-dRMsPMB ) with payloads up to 2% that are approximately sevenfold higher than those obtained via hydrophobic ion pairing. Within 6 h P85-SEDDS-dRMsPMB and AOT-SEDDS-dRMsPMB show no release of PMB in aqueous medium, whereas DODAB-SEDDS-dRMsPMB and SL-SEDDS-dRMsPMB show a sustained release. DODAB-SEDDS-dRMsPMB improves uptake by Caco-2 cells most efficiently reaching even ≈100% within 4 h followed by AOT-SEDDS-dRMsPMB with ≈20% and P85-/SL-SEDDS-dRMsPMB with ≈5%. The peptide drug maintains its antimicrobial activity in all SEDDS-dRMsPMB . According to these results, SEDDS containing dRMs might be a game changing strategy for oral peptide drug delivery.


Subject(s)
Emulsifying Agents , Micelles , Humans , Emulsifying Agents/chemistry , Caco-2 Cells , Peptides/chemistry , Surface-Active Agents/chemistry , Drug Delivery Systems/methods , Emulsions/chemistry , Administration, Oral , Solubility
8.
J Colloid Interface Sci ; 630(Pt B): 164-178, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36327720

ABSTRACT

HYPOTHESIS: Aminoglycosides are well known, cationic antimicrobial drugs. However, biofilm-based antibiotic resistance significantly limits their efficacy. Masking the polycationic character of these drugs, followed by incorporation into self-emulsifying drug delivery systems (SEDDS) can improve biofilm eradication. EXPERIMENTS: Imine derivatives were synthesized via coupling with trans-cinnamaldehyde and characterized regarding degree of substitution, logP, cytotoxicity and antimicrobial efficacy on the opportunistic human pathogens Escherichia coli, Staphylococcus aureus and Candida albicans. Imines were loaded into newly developed SEDDS formulations and the antimicrobial efficacy was assessed on these pathogens in planktonic state and after biofilm formation. FINDINGS: Successful synthesis of imine derivatives with almost entirely masked amine groups was confirmed by NMR, FT-IR, TLC and MS. Imines exhibited a marked elevation in logP value of 8 units for kanamycin and 7.7 units for tobramycin. They showed low toxicity profiles while fully preserving antimicrobial efficacy on all tested pathogens. Incorporation into SEDDS resulted in nanoemulsions, which exhibited equal antimicrobial efficacy on the model germs compared to the corresponding aminoglycosides. Moreover, the biofilm eradication assay revealed superior anti-biofilm properties of the nanoemulsions. Native aminoglycosides were largely prone to reduced microbial susceptibility due to biofilm formation, while the combination of SEDDS with iminated aminoglycosides provided overall enhanced biofilm eradication.


Subject(s)
Aminoglycosides , Anti-Infective Agents , Humans , Aminoglycosides/pharmacology , Spectroscopy, Fourier Transform Infrared , Anti-Bacterial Agents/pharmacology , Drug Delivery Systems/methods , Emulsions/chemistry , Imines
9.
Eur J Pharm Biopharm ; 176: 32-42, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35584719

ABSTRACT

The digestion behaviour of lipid-based nanocarriers (LNC) has a great impact on their oral drug delivery properties. In this study, various excipients including surfactants, glycerides and waxes, as well as various drug-delivery systems, namely self-emulsifying drug delivery systems (SEDDS), solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) were examined via the pH-stat lipolysis model. Lipolysis experiments with lipase and pancreatin revealed the highest release of fatty acids for medium chain glycerides, followed by long chain glycerides and surfactants. Waxes appeared to be poor substrates with a maximum digestion of up to 10% within 60 min. Within the group of surfactants, the enzymatic cleavage decreased in the following order: glycerol monostearate > polyoxyethylene (20) sorbitan monostearate > PEG-35 castor oil > sorbitan monostearate. After digestion experiments of the excipients, SEDDS, SLN and NLC with sizes between 30 and 300 nm were prepared. The size of almost all formulations was increasing during lipolysis and levelled off after approximately 15 min except for the SLN and NLC consisting of cetyl palmitate. SEDDS exceeded 6000 nm after some minutes and were almost completely hydrolysed by pancreatin. No significant difference was observed between comparable SLN and NLC but surfactant choice and selection of the lipid component had an impact on digestion. SLN and NLC with cetyl palmitate were only digested by 5% whereas particles with glyceryl distearate were decomposed by 40-80% within 60 min. Additionally, the digestion of the same SLN or NLC, only differing in the surfactant, was higher for SLN/NLC containing polyoxyethylene (20) sorbitan monostearate than PEG-35 castor oil. This observation might be explained by the higher PEG content of PEG-35 castor oil causing a more pronounced steric hindrance for the access of lipase. Generally, digestion experiments performed with pancreatin resulted in a higher digestion compared to lipase. According to these results, the digestion behaviour of LNC depends on both, the type of nanocarrier and on the excipients used for them.


Subject(s)
Excipients , Nanoparticles , Castor Oil , Digestion , Drug Carriers/chemistry , Excipients/chemistry , Glycerides/chemistry , Lipase/chemistry , Lipids/chemistry , Liposomes , Nanoparticles/chemistry , Pancreatin/chemistry , Particle Size , Polyethylene Glycols , Surface-Active Agents/chemistry , Waxes
10.
Neuroimage ; 22(2): 626-36, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15193591

ABSTRACT

This study examined frontal lobe subregions in 46 normal children and adolescents (25 females, mean age: 11.08, SD: 3.07; and 21 males, mean age: 10.76, SD: 2.61) to assess the effects of age and gender on volumetric measures as well as hemispheric asymmetries. Superior, middle, inferior, and orbito-frontal gray, white, and cerebrospinal (CSF) volumes were manually delineated in high-resolution magnetic resonance imaging (MRI) data to assess possible morphological changes. We report a significant age-related increase in the white matter of the left inferior frontal gyrus (IFG) in boys (P = 0.007). Additionally, the left IFG was significantly larger in boys compared to girls (P = 0.004). Boys showed increased gray matter volume relative to girls even after correcting for total cerebral volume. Also, boys were found to have significant Right > Left asymmetry patterns with greater right hemispheric volumes for total cerebral volume, total cerebral white matter, MFG white matter, and SFG white matter (P < 0.001). Girls showed significant Right > Left asymmetry patterns in total cerebral and SFG white matter (P < 0.001). These findings suggest continued modification of the IFG during normal development in boys, and significant gender differences in IFG gray matter between boys and girls that may be possibly linked to gender differences in speech development and lateralization of language.


Subject(s)
Dentate Gyrus/anatomy & histology , Intelligence/physiology , Age Factors , Child , Female , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Male , Periaqueductal Gray/anatomy & histology , Sex Characteristics
SELECTION OF CITATIONS
SEARCH DETAIL
...