Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Rep ; 12(1): 22420, 2022 12 27.
Article in English | MEDLINE | ID: mdl-36575233

ABSTRACT

Epidermal growth factor receptor (EGFR) is an effective target for those patients with metastatic colorectal cancers that retain the wild-type RAS gene. However, its efficacy in many cancers, including bladder cancer, is unclear. Here, we studied the in vitro effects of cetuximab monoclonal antibodies (mAbs) targeting EGFR on the bladder cancer cells and role of CD46. Cetuximab was found to inhibit the growth of both colon and bladder cancer cell lines. Furthermore, cetuximab treatment inhibited AKT and ERK phosphorylation in the bladder cancer cells and reduced the expression of CD46 membrane-bound proteins. Restoration of CD46 expression protected the bladder cancer cells from cetuximab-mediated inhibition of AKT and ERK phosphorylation. We hypothesized that CD46 provides protection to the bladder cancer cells against mAb therapies. Bladder cancer cells were also susceptible to cetuximab-mediated immunologic anti-tumor effects. Further, cetuximab enhanced the cell killing by activating both antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) in bladder cancer cells. Restoration of CD46 expression protected the cells from both CDC and ADCC induced by cetuximab. Together, CD46 exhibited a cancer-protective effect against both direct (by involvement of PBMC or complement) and indirect cytotoxic activity by cetuximab in bladder cancer cells. Considering its clinical importance, CD46 could be an important link in the action mechanism of ADCC and CDC intercommunication and may be used for the development of novel therapeutic strategies.


Subject(s)
Antineoplastic Agents , Urinary Bladder Neoplasms , Humans , Cetuximab/pharmacology , Leukocytes, Mononuclear/metabolism , Proto-Oncogene Proteins c-akt , Antibodies, Monoclonal, Humanized/pharmacology , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antibodies, Monoclonal/pharmacology , ErbB Receptors/metabolism , Antibody-Dependent Cell Cytotoxicity , Urinary Bladder Neoplasms/drug therapy , Membrane Cofactor Protein
2.
Am J Cancer Res ; 12(10): 4853-4864, 2022.
Article in English | MEDLINE | ID: mdl-36381334

ABSTRACT

δ-Catenin is expressed abundantly in various human cancers, including prostate, brain, breast, and lung carcinomas, and is recognized as an oncogene that promotes cancer cell growth and tumorigenesis. Although several transcriptional and post-translational pathways for δ-catenin regulation have been identified in cancer cells, the potential effects of microRNA-mediated regulation remain elusive. Here, we used a δ-catenin 3'-UTR luciferase reporter assay to identify regulatory microRNAs. Subsequent bioinformatics analyses and molecular studies revealed that overexpression of miR-122 downregulated δ-catenin expression significantly via targeted binding to a seed sequence in the 3'-UTR region of δ-catenin, and suppressed the invasion, migration, and proliferation of prostate cancer cells in vitro. In a TRAMP-C2 mouse syngeneic prostate tumor model, stable expression of miR-122 decreased both δ-catenin expression and tumor growth. Mechanistically, overexpression of miR-122 inhibited the expression of δ-catenin-mediated downstream factors significantly in prostate cancer cells, including c-myc and cyclin D1. In cells overexpressing miR-122, there was no additive or synergistic effect of siRNA-mediated knockdown of δ-catenin on cell invasiveness, and overexpression of miR-122 alone had a more pronounced suppressive effect on cell invasion than knockdown of δ-catenin alone. These results suggest that miR-122 acts as tumor suppressor in prostate cancer, mainly by downregulating δ-catenin expression, but also by targeting other factors. Indeed, subsequent experiments showed that overexpression of miR-122 reduced the levels of the mRNAs encoding myc, snail, and VEGF in prostate cancer cells. Overall, our findings demonstrate that targeting of δ-catenin by miR-122 represses the motility and tumorigenesis of prostate cancer cells, indicating a tumor suppressive effect of this miRNA in prostate cancer.

3.
Int J Mol Sci ; 21(8)2020 Apr 23.
Article in English | MEDLINE | ID: mdl-32340289

ABSTRACT

Zinc is a group IIB heavy metal. It is an important regulator of major cell signaling pathways in most mammalian cells, functions as an antioxidant and plays a role in maintaining genomic stability. Zinc deficiency leads to severe diseases in the brain, pancreas, liver, kidneys and reproductive organs. Zinc loss occurs during tumor development in a variety of cancers. The prostate normally contains abundant intracellular zinc and zinc loss is a hallmark of the development of prostate cancer development. The underlying mechanism of this loss is not clearly understood. The knowledge that excess zinc prevents the growth of prostate cancers suggests that zinc-mediated therapeutics could be an effective approach for cancer prevention and treatment, although challenges remain. This review summarizes the specific roles of zinc in several cancer types focusing on prostate cancer. The relationship between prostate cancer and the dysregulation of zinc homeostasis is examined in detail in an effort to understand the role of zinc in prostate cancer.


Subject(s)
Prostatic Neoplasms/metabolism , Zinc/metabolism , Animals , Biological Transport , Clinical Studies as Topic , Disease Susceptibility , Drug Delivery Systems , Drug Evaluation, Preclinical , Homeostasis , Humans , Male , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/etiology , Prostatic Neoplasms/pathology , Signal Transduction/drug effects , Treatment Outcome , Zinc/pharmacology , Zinc/therapeutic use , Zinc Fingers
4.
Int J Mol Sci ; 19(10)2018 Oct 08.
Article in English | MEDLINE | ID: mdl-30297600

ABSTRACT

The prostate gland contains a high level of intracellular zinc, which is dramatically diminished during prostate cancer (PCa) development. Owing to the unclear role of zinc in this process, therapeutic applications using zinc are limited. This study aimed to clarify the role of zinc and its underlying mechanism in the growth of PCa. ZnCl2 suppressed the proliferation of androgen receptor (AR)-retaining PCa cells, whereas it did not affect AR-deficient PCa cells. In LNCaP and TRAMP-C2 cells, zinc downregulated the expression of AR in a dose- and time-dependent fashion. Zinc-mediated AR suppression accordingly inhibited the androgen-mediated transactivation and expression of the androgen target, prostate specific antigen (PSA). This phenomenon resulted from facilitated protein degradation, not transcriptional control. In studies using mice bearing TRAMP-C2 subcutaneous tumors, the intraperitoneal injection of zinc significantly reduced tumor size. Analyses of both xenograft tumors and normal prostates showed reduced expression of AR and increased cell death. Considering the significant loss of intracellular zinc and the dominant growth-modulating role of AR during PCa development, loss of zinc may be a critical step in the transformation of normal cells to cancer cells. This study provides the underlying mechanism by which zinc functions as a PCa suppressor, and forms the foundation for developing zinc-mediated therapeutics for PCa.


Subject(s)
Antineoplastic Agents/pharmacology , Prostatic Neoplasms/metabolism , Receptors, Androgen/metabolism , Zinc Compounds/pharmacology , Animals , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Male , Mice , Mice, Inbred C57BL , Prostate-Specific Antigen/genetics , Prostate-Specific Antigen/metabolism , Prostatic Neoplasms/drug therapy , Receptors, Androgen/genetics , Zinc Compounds/therapeutic use
5.
Int J Mol Sci ; 19(9)2018 Sep 10.
Article in English | MEDLINE | ID: mdl-30201920

ABSTRACT

CD46 is generally overexpressed in many human cancers, representing a prime target for CD46-binding adenoviruses (Ads). This could help to overcome low anti-tumoral activity by coxsackie-adenoviral receptor (CAR)-targeting cancer gene therapy viruses. However, because of scarce side-by-side information about CAR and CD46 expression levels in cancer cells, mixed observations of cancer therapeutic efficacy have been observed. This study evaluated Ad-mediated therapeutic efficacy using either CAR-targeting Ad5 or CD46-targeting Ad5/35 fiber chimera in bladder cancer cell lines. Compared with normal urothelia, bladder cancer tissue generally overexpressed both CAR and CD46. While CAR expression was not correlated with disease progression, CD46 expression was inversely correlated with tumor grade, stage, and risk grade. In bladder cancer cell lines, expression levels of CD46 and CAR were highly correlated with Ad5/35- and Ad5-mediated gene transduction and cytotoxicity, respectively. In a human EJ bladder cancer xenograft mouse model, with either overexpressed or suppressed CD46 expression levels, Ad5/35-tk followed by ganciclovir (GCV) treatment significantly affected tumor growth, whereas Ad5-tk/GCV had only minimal effects. Overall, our findings suggest that bladder cancer cells overexpress both CAR and CD46, and that adenoviral cancer gene therapy targeting CD46 represents a more suitable therapy option than a CAR-targeting therapy, especially in patients with low risk bladder cancers.


Subject(s)
Adenoviridae/genetics , Coxsackie and Adenovirus Receptor-Like Membrane Protein/metabolism , Membrane Cofactor Protein/metabolism , Thymidine Kinase/genetics , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/therapy , Aged , Animals , Cell Line, Tumor , Female , Ganciclovir/administration & dosage , Ganciclovir/pharmacology , Gene Expression Regulation, Neoplastic , Genetic Therapy , Genetic Vectors/administration & dosage , Humans , Male , Mice , Middle Aged , Neoplasm Grading , Survival Analysis , Transduction, Genetic , Up-Regulation , Urinary Bladder Neoplasms/pathology , Xenograft Model Antitumor Assays
6.
Oncol Rep ; 35(4): 2011-6, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26781690

ABSTRACT

Many prostate cancer (PCa) patients die of recurrent disease due to the emergence of hormone-independent cancer cells of which the mechanism is not fully understood. Our previous studies demonstrated that most castration- resistant prostate cancers (CRPC) overexpress the HOXB13 transcription factor to confer positive growth signals. Since HOXB13 also suppresses p21WAF1/CIP1 (p21) expression, we studied the correlation between HOXB13 and p21 in selected samples of PCa. While there was no statistically significant correlation between expression of HOXB13 and p21, HOXB13-deficient tumors had three times higher odds for expressing p21 than HOXB13-positive tumors. Moreover, CRPC showed more negative correlation than hormone-dependent PCa (HDPC). Further in vitro proliferation assay demonstrated that androgen did not affect the growth-suppressive function of p21 in androgen-dependent PCa cells, suggesting that p21 seems to override the growth-promoting function of androgen and suppression of p21 expression by HOXB13 is an important step in PCa cell survival under no androgen influence. HOXB13 also inhibited AP-1 signals via suppressed expression of JNK/c-Jun. While HOXB13 suppressed p21 expression via regulation of JNK signals, alteration of p21 expression also affected c-Jun and AP-1 activity. Taken together, overexpression of HOXB13 in CRPC is an important step in avoiding the growth-suppressive effect of p21 in a harsh condition such as an androgen-deprived environment.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p21/metabolism , Homeodomain Proteins/metabolism , Prostatic Neoplasms/metabolism , Aged , Aged, 80 and over , Androgens/pharmacology , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Humans , MAP Kinase Signaling System , Male , Middle Aged , Prostatic Neoplasms/pathology
7.
J Food Prot ; 77(1): 57-66, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24405999

ABSTRACT

The objectives of this study were to quantify Salmonella counts on retail raw poultry meat in Vietnam and to phenotypically characterize (serovars and antibiotic resistance) the isolates. A total of 300 chicken carcasses were collected from two cities and two provinces in Vietnam. Salmonella counts on the samples were determined according to the most-probable-number (MPN) method of the U.S. Department of Agriculture, Food Safety and Inspection Service (USDA-FSIS). A total of 457 isolates were serotyped and tested for antibiotic susceptibility. Overall, 48.7% of chicken samples were Salmonella positive with a count of 2.0 log MPN per carcass. There were no significant differences (P > 0.05) in log MPN per carcass by the study variables (market type, storage condition, and chicken production system). There was a significant difference (P < 0.05) in Salmonella-positive prevalence by chicken production system. Among the 22 Salmonella serovars identified, Albany was the most frequent (34.1%), followed by Agona (15.5%) and Dabou (8.8%). Resistance to at least one antibiotic was common (i.e., 73.3%), with high resistance to tetracycline (59.1%) and ampicillin (41.6%). Resistance to three antibiotics was the most frequently found multidrug resistance profile (17.7%, n = 81); the profile that was resistant to the highest number of drugs was resistant to nine antibiotics (0.7%, n = 3). Only Salmonella Albany posed phenotypic resistance to ceftriaxone (a drug of choice to treat severe cases of salmonellosis). The data revealed that, whereas Salmonella prevalence on raw poultry was high (48.7%), counts were low, which suggests that the exposure risk to Salmonella is low. However, improper storage of raw chicken meat and cross-contamination may increase Salmonella cell counts and pose a greater risk for infection. These data may be helpful in developing risk assessment models and preventing the transmission of foodborne Salmonella from poultry to humans in Vietnam.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial , Food Contamination/analysis , Food Handling/methods , Poultry Products/microbiology , Salmonella/isolation & purification , Animals , Chickens , Colony Count, Microbial , Dose-Response Relationship, Drug , Food Microbiology , Humans , Microbial Sensitivity Tests , Prevalence , Salmonella/classification , Salmonella/drug effects , Salmonella Food Poisoning/prevention & control , United States , Vietnam
8.
J Food Prot ; 75(10): 1851-4, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23043836

ABSTRACT

This study was conducted to estimate the prevalence of Salmonella on chicken carcasses collected from six regions in Vietnam. A total of 1,000 whole, dressed chicken carcasses were collected from five cities and seven provinces across the six regions in Vietnam. Of these, 900 samples were collected from wet markets and 100 from supermarkets. All samples were analyzed for the presence of Salmonella according to a method recommended by the U. S. Department of Agriculture, Food Safety and Inspection Service. The overall Salmonella prevalence was 45.9%. There was no significant difference (P > 0.05) in Salmonella prevalence by (i) location (Ha Noi city, 51.1%; Hai Phong city, 45.6%; Da Nang and Can Tho cities, 45.5%; Bac Ninh province and Ho Chi Minh city, 44.7%; Dong Nai province, 44.6%; Ha Tinh province, 44.4%; Phu Tho province, 43.8%; Lao Cai province, 43.5%; Kien Giang province, 41.9%; and Lam Dong province, 40.9%), (ii) market type (wet market, 46.2%; supermarket samples, 43.0%), and (iii) storage temperature at retail (ambient storage, 46.4%; chilled storage, 45.1%). Hence, Salmonella presence on poultry meat in Vietnam was not associated with a specific city or province, market type, or storage temperature at retail. Strategies to reduce Salmonella levels on raw poultry in Vietnam should be undertaken to improve the safety of poultry products and reduce the incidence of human salmonellosis from poultry consumption.


Subject(s)
Chickens/microbiology , Food Contamination/analysis , Salmonella Food Poisoning/prevention & control , Salmonella/isolation & purification , Animals , Commerce/standards , Consumer Product Safety , Humans , Prevalence , Vietnam/epidemiology
9.
Biochemistry ; 51(1): 362-9, 2012 Jan 10.
Article in English | MEDLINE | ID: mdl-22182063

ABSTRACT

Oxidative damage plays a causative role in many diseases, and DNA-protein cross-linking is one important consequence of such damage. It is known that GG and GGG sites are particularly prone to one-electron oxidation, and here we examined how the local DNA sequence influences the formation of DNA-protein cross-links induced by guanine oxidation. Oxidative DNA-protein cross-linking was induced between DNA and histone protein via the flash quench technique, a photochemical method that selectively oxidizes the guanine base in double-stranded DNA. An assay based on restriction enzyme cleavage was developed to detect the cross-linking in plasmid DNA. Following oxidation of pBR322 DNA by flash quench, several restriction enzymes (PpuMI, BamHI, EcoRI) were then used to probe the plasmid surface for the expected damage at guanine sites. These three endonucleases were strongly inhibited by DNA-protein cross-linking, whereas the AT-recognizing enzyme AseI was unaffected in its cleavage. These experiments also reveal the susceptibility of different guanine sites toward oxidative cross-linking. The percent inhibition observed for the endonucleases, and their pBR322 cleavage sites, decreased in the order: PpuMI (5'-GGGTCCT-3' and 5'-AGGACCC-3') > BamHI (5'-GGATCC-3') > EcoRI (5'-GAATTC-3'), a trend consistent with the observed and predicted tendencies for guanine to undergo one-electron oxidation: 5'-GGG-3' > 5'-GG-3' > 5'-GA-3'. Thus, it appears that in mixed DNA sequences the guanine sites most vulnerable to oxidative cross-linking are those that are easiest to oxidize. These results further indicate that equilibration of the electron hole in the plasmid DNA occurs on a time scale faster than that of cross-linking.


Subject(s)
Base Sequence , Cross-Linking Reagents/chemistry , DNA Damage , DNA Restriction Enzymes/antagonists & inhibitors , DNA Restriction Enzymes/chemistry , Guanine/chemistry , Proteins/chemistry , Proteins/genetics , Ascomycota/enzymology , Cross-Linking Reagents/metabolism , DNA Restriction Enzymes/genetics , Guanine/metabolism , Histones/chemistry , Histones/genetics , Hydrolysis , Oxidation-Reduction , Oxidative Stress/genetics
10.
Biochemistry ; 42(34): 10269-81, 2003 Sep 02.
Article in English | MEDLINE | ID: mdl-12939156

ABSTRACT

DNA-protein cross-links form when guanine undergoes a 1-electron oxidation in a flash-quench experiment, and the importance of reactive oxygen species, protein, and photosensitizer is examined here. In these experiments, a strong oxidant produced by oxidative quenching of a DNA-bound photosensitizer generates an oxidized guanine base that reacts with protein to form the covalent adduct. These cross-links are cleaved by hot piperidine and are not the result of reactive oxygen species, since neither a hydroxyl radical scavenger (mannitol) nor oxygen affects the yield of DNA-histone cross-linking, as determined via a chloroform extraction assay. The cross-linking yield depends on protein, decreasing as histone > cytochrome c > bovine serum albumin. The yield does not depend on the cytochrome oxidation state, suggesting that reduction of the guanine radical by ferrocytochrome c does not compete effectively with cross-linking. The photosensitizer strongly influences the cross-linking yield, which decreases in the order Ru(phen)(2)dppz(2+) [phen = 1,10-phenanthroline; dppz = dipyridophenazine] > Ru(bpy)(3)(2+) [bpy = 2,2'-bipyridine] > acridine orange > ethidium, in accordance with measured oxidation potentials. A long-lived transient absorption signal for ethidium dication in poly(dG-dC) confirms that guanine oxidation is inefficient for this photosensitizer. From a polyacrylamide sequencing gel of a (32)P-labeled 40-mer, all of these photosensitizers are shown to damage guanines preferentially at the 5' G of 5'-GG-3' steps, consistent with a 1-electron oxidation. Additional examination of ethidium shows that it can generate cross-links between histone and plasmid DNA (pUC19) and that the yield depends on the quencher. Altogether, these results illustrate the versatility of the flash-quench technique as a way to generate physiologically relevant DNA-protein adducts via the oxidation of guanine and expand the scope of such cross-linking reactions to include proteins that may associate only transiently with DNA.


Subject(s)
Cytochrome c Group/chemistry , DNA Damage , DNA/chemistry , Guanine/chemistry , Histones/chemistry , Photosensitizing Agents/chemistry , Serum Albumin, Bovine/chemistry , Animals , Base Sequence , Cattle , Cross-Linking Reagents/chemistry , Electrochemistry/methods , Electrophoresis, Polyacrylamide Gel , Heme/chemistry , Horses , Hydroxyl Radical/chemistry , Molecular Sequence Data , Oxidation-Reduction , Photochemistry/methods , Photosensitizing Agents/analysis , Piperidines/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...