Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 11(25): 3054-65, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-25703808

ABSTRACT

Ultraviolet (UV) photodetectors based on ZnO nanostructure/graphene (Gr) hybrid-channel field-effect transistors (FETs) are investigated under illumination at various incident photon intensities and wavelengths. The time-dependent behaviors of hybrid-channel FETs reveal a high sensitivity and selectivity toward the near-UV region at the wavelength of 365 nm. The devices can operate at low voltage and show excellent selectivity, high responsivity (RI ), and high photoconductive gain (G). The change in the transfer characteristics of hybrid-channel FETs under UV light illumination allows to detect both photovoltage and photocurrent. The shift of the Dirac point (V Dirac ) observed during UV exposure leads to a clearer explanation of the response mechanism and carrier transport properties of Gr, and this phenomenon permits the calculation of electron concentration per UV power density transferred from ZnO nanorods and ZnO nanoparticles to Gr, which is 9 × 10(10) and 4 × 10(10) per mW, respectively. The maximum values of RI and G infer from the fitted curves of RI and G versus UV intensity are 3 × 10(5) A W(-1) and 10(6) , respectively. Therefore, the hybrid-channel FETs studied herein can be used as UV sensing devices with high performance and low power consumption, opening up new opportunities for future optoelectronic devices.

2.
J Hazard Mater ; 244-245: 209-16, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23246957

ABSTRACT

Carbon dioxide (CO(2)) and carbon monoxide (CO) emissions from industries and combustion fuels such as coal, oil, hydrocarbon, and natural gases are increasing, thus causing environmental pollution and climate change. The selective detection of CO(2) and CO gases is important for environmental monitoring and industrial safety applications. In this work, LaOCl-coated ZnO nanowires (NWs) sensors are fabricated and characterized for the detection of CO(2) (250-4000 ppm) and CO (10-200 ppm) gases at different operating temperatures. The effects of the LaCl(3) coating concentration and calcination temperature of the sensors are studied. They are found to have a strong influence on the sensing performance to CO(2) gas, but a relatively slight influence on that to CO. The LaOCl coating enhances the response and shortens the response and recovery times to CO(2) compared with those to CO. The enhanced response of the LaOCl-coated ZnO NW sensors is attributed to the extension of the electron depletion layer due to the formation of p-LaOCl/n-ZnO junctions on the surfaces of the ZnO NWs.


Subject(s)
Air Pollutants/analysis , Carbon Dioxide/analysis , Carbon Monoxide/analysis , Lanthanum/chemistry , Nanowires/chemistry , Zinc Oxide/chemistry , Air Pollutants/chemistry , Carbon Dioxide/chemistry , Carbon Monoxide/chemistry , Environmental Monitoring/methods , Microscopy, Electron, Scanning , Nanowires/ultrastructure
3.
Talanta ; 88: 152-9, 2012 Jan 15.
Article in English | MEDLINE | ID: mdl-22265481

ABSTRACT

In spite of the technical important of monitoring CO(2) gas by using a semiconductor-type gas sensor, a good sensitive and selective semiconductor CO(2) sensor has been not realized due to the rather unreactive toward CO(2) of conventional semiconductor metal oxides. In this work, a novel semiconductor CO(2) sensor was developed by functionalizing SnO(2) nanowires (NWs) with LaOCl, which was obtained by heat-treating the SnO(2) NWs coating with LaCl(3) aqueous solution at a temperature range of 500-700°C. The bare SnO(2) NWs and LaOCl-SnO(2) NWs sensors were characterized with CO(2) (250-4,000 ppm) and interference gases (100 ppm CO, 100 ppm H(2), 250 ppm LPG, 10 ppm NO(2) and 20 ppm NH(3)) at different operating temperatures for comparison. The SnO(2) NWs sensors functionalized with different concentrations of LaCl(3) solution were also examined to find optimized values. Comparative gas sensing results reveal that LaOCl-SnO(2) NWs sensors exhibit much higher response, shorter response-recovery and better selectivity in detecting CO(2) gas at 400°C operating temperature than the bare SnO(2) NWs sensors. This finding indicates that the functionalizing with LaOCl greatly improves the CO(2) response of SnO(2) NWs-based sensor, which is attributed to (i) p-n junction formation of LaOCl (p-type) and SnO(2) nanowires (n-type) that led to the extension of electron depletion and (ii) the favorable catalytic effect of LaOCl to CO(2) gas.


Subject(s)
Air/analysis , Carbon Dioxide/analysis , Hypochlorous Acid/chemistry , Lanthanum/chemistry , Nanowires/chemistry , Tin Compounds/chemistry , Catalysis , Gases , Hot Temperature , Semiconductors , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...