Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Language
Publication year range
1.
Sci Total Environ ; 835: 155414, 2022 Aug 20.
Article in English | MEDLINE | ID: mdl-35469871

ABSTRACT

Due to the worldwide growing population, the demand on food increases, which results in the need for a higher productivity in agriculture. Generally, this leads to larger amounts of agricultural residues and by-products, which may cause severe environmental risks due to emissions from simple burning or storing, especially in emerging and developing countries. In Vietnam agricultural by-products arise in total of 118 Mt per year, whereas 80% are coming from rice and sugar cane processing. By the selection of favorable plant varieties, seed, and/or seedlings, it is possible to improve the rice and sugar yield. Besides, the by-products offer a great potential for a value-added material use. We developed a flexible portable, integrated process scheme aside from high-tech biotechnology applications. Erosion control blankets, soil improvers/composts for an improved crop yield and soil management, and adsorbents with the focus on environmental issues for cleaning of fluid streams were produced from different fractions of the residue fractions via thermo-mechanical processes. As a consequence, fossil raw material input streams, e.g. polymer based textiles, inorganic fertilizing agents, and peat/coal can be avoided. In laboratory and field tests we demonstrate the producibility and the applicability and summarize the positive impact of the aforementioned products made from rice straw and bagasse: The improved varieties as well as the addition of selected soil improvers/composts made from the by-products improve the test plants' yield and quality. The application of erosion control blankets prevents soil loss and dehydration by covering soil surface for a period of transition. The produced shaped activated carbons show mechanical and adsorption specific properties, which are comparable to commercial products.


Subject(s)
Oryza , Agriculture/methods , Carbohydrates , Oryza/chemistry , Soil/chemistry , Sugars , Vietnam
2.
Braz. J. Pharm. Sci. (Online) ; 58: e18837, 2022. tab, graf
Article in English | LILACS | ID: biblio-1374558

ABSTRACT

Abstract Recently, the acetate wheat starch (AWS) has been prepared by acetylation with an acetyl content of 2.42%, containing of rapidly digestible starch (RDS), slowly digestible starch (SDS) and resistant starch (RS) with 25.0%; 22.9% and 34.5%, respectively. In this study, this kind of starch was continuously evaluated with the postprandial blood glucose response and determined short-chain fatty acids (SCFAs) metabolized from AWS in the gastrointestinal tract of healthy mice by HPLC. The result showed that the mice fed with AWS exhibited a very limited increase in blood glucose level and remained stable for 2 hours after meals efficiently comparing with the control group fed with natural wheat starch (NWS). Simultaneously, the content of SCFAs produced in the caecum of the mice fed with AWS was significantly higher than mice fed with NWS, especially with acetic and propionic acids by 28% and 26%, respectively. Thus, AWS has shown to limit the postprandial hyperglycemia in mice effectively through the resistance to amylase hydrolysis in the small intestine. When going into the caecum, it is fermented to form SCFAs providing a part of energy for the body's activities, avoiding rotten fermentation causing digestive disorders which are inherent restrictions of normal high cellulose and fiber food.


Subject(s)
Animals , Male , Female , Mice , Starch/adverse effects , Triticum/classification , Hyperglycemia/pathology , Acetates/agonists , Chromatography, High Pressure Liquid/methods , Gastrointestinal Tract/abnormalities , Food/classification , Glucose/pharmacology
3.
Nanotechnology ; 31(45): 455705, 2020 Nov 06.
Article in English | MEDLINE | ID: mdl-32365347

ABSTRACT

A silicon substrate consisting of nanoporous silicon film could enhance the thermoelectric performance of bulk silicon due to its low thermal conductivity. Metal-assisted chemical etching (MACE) is a wet method for fabricating diverse nano/micro structures, which uses a noble metal as the catalyst for etching of semiconductor materials. In this study, we report the thermoelectrical properties of silicon substrates with nanopores in different porosities fabricated by MACE employing Ag nanoparticle as a metal catalyst. Different porosities of the nanoporous silicon layer were obtained by adjusting the deposition time of Ag nanoparticles. The lateral nanopores were found on the surface of the vertical nanopores sidewall caused by Ag nanoparticles. With the increase of the porosity, the surface area of the nanopores sidewall became rougher. In comparison with single-crystal silicon, silicon substrates with nanopores can enhance the thermoelectric figure of merit, ZT, due to the relativity high Seebeck coefficient and low thermal conductivity. However, lower electrical conductivity limits the enhancement of the ZT value. The porosity effect on the thermoelectrical properties of silicon substrates with nanopores was evaluated. The Seebeck coefficient has a maximum value at a porosity of 38% and then decreases at a porosity of 49%, and the electrical conductivity and thermal conductivity decrease with the increase of porosity. At a porosity of 38%, the ZT value of silicon substrates with nanopores can reach approximately 0.02, which is 7.3 times larger than that of the original high-doped single-crystalline silicon. Thus the nanoporous silicon film fabricated by MACE can enhance the thermoelectric performance of the bulk silicon.

4.
Micromachines (Basel) ; 11(5)2020 May 21.
Article in English | MEDLINE | ID: mdl-32455654

ABSTRACT

The microfabrication with a magnetostrictive TbxDy(1-x)Fey thin film for magnetic microactuators is developed, and the magnetic and magnetostrictive actuation performances of the deposited thin film are evaluated. The magnetostrictive thin film of TbxDy(1-x)Fey is deposited on a metal seed layer by electrodeposition using a potentiostat in an aqueous solution. Bi-material cantilever structures with the Tb0.36Dy0.64Fe1.9 thin-film are fabricated using microfabrication, and the magnetic actuation performances are evaluated under the application of a magnetic field. The actuators show large magnetostriction coefficients of approximately 1250 ppm at a magnetic field of 11000 Oe.

5.
Materials (Basel) ; 10(2)2017 Feb 10.
Article in English | MEDLINE | ID: mdl-28772511

ABSTRACT

This paper presents the results of the synthesis and evaluation of thick thermoelectric films that may be used for such applications as thermoelectric power generators. Two types of electrochemical deposition methods, constant and pulsed deposition with improved techniques for both N-type bismuth telluride (Bi2Te3) and P-type antimony telluride (Sb2Te3), are performed and compared. As a result, highly oriented Bi2Te3 and Sb2Te3 thick films with a bulk-like structure are successfully synthesized with high Seebeck coefficients and low electrical resistivities. Six hundred-micrometer-thick Bi2Te3 and 500-µm-thick Sb2Te3 films are obtained. The Seebeck coefficients for the Bi2Te3 and Sb2Te3 films are -150 ± 20 and 170 ± 20 µV/K, respectively. Additionally, the electrical resistivity for the Bi2Te3 is 15 ± 5 µΩm and is 25 ± 5 µΩm for the Sb2Te3. The power factors of each thermoelectric material can reach 15 × 10-4 W/mK² for Bi2Te3 and 11.2 × 10-4 W/mK² for Sb2Te3.

6.
Micromachines (Basel) ; 8(10)2017 Oct 20.
Article in English | MEDLINE | ID: mdl-30400502

ABSTRACT

This paper reports the design and fabrication of capacitive silicon nanomechanical resonators with the selective vibration of a high-order mode. Fixed-fixed beam capacitive silicon resonators have been successfully produced by the use of electron beam lithography, photolithography, deep reactive ion etching, and anodic bonding methods. All resonators with different vibration modes are designed to have the same resonant frequency for performance comparison. Measurement results show that higher-order mode capacitive silicon resonators can achieve lower insertion loss compared to that of lower-order mode capacitive silicon resonators. The motional resistance of the fourth mode vibration resonator is improved by 83%, 90%, and 93% over the third, second, and first mode vibration resonators, respectively.

7.
Micromachines (Basel) ; 7(5)2016 Apr 25.
Article in English | MEDLINE | ID: mdl-30404250

ABSTRACT

This paper presents a process for the fabrication of vacuum-sealed capacitive micromachined ultrasonic transducer (CMUT) arrays using glass reflow and anodic bonding techniques. Silicon through-wafer interconnects have been investigated by the glass reflow process. Then, the patterned silicon-glass reflow wafer is anodically bonded to an SOI (silicon-on-insulator) wafer for the fabrication of CMUT devices. The CMUT 5 × 5 array has been successfully fabricated. The resonant frequency of the CMUT array with a one-cell radius of 100 µm and sensing gap of 3.2 µm (distance between top and bottom electrodes) is observed at 2.84 MHz. The Q factor is approximately 1300 at pressure of 0.01 Pa.

SELECTION OF CITATIONS
SEARCH DETAIL
...