Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 130(13): 133603, 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37067301

ABSTRACT

Ensembles of nitrogen-vacancy (NV) centers are used as sensors to detect nuclear magnetic resonance signals from micron-sized samples at room temperature. In this scenario, the regime of large magnetic fields is especially interesting as it leads to a large nuclear thermal polarization-thus, to a strong sensor response even in low concentration samples-while chemical shifts and J couplings become more accessible. Nevertheless, this regime remains largely unexplored owing to the difficulties of coupling NV-based sensors with high-frequency nuclear signals. In this Letter, we circumvent this problem with a method that maps the relevant energy shifts in the amplitude of an induced nuclear spin signal that is subsequently transferred to the sensor. This stage is interspersed with free-precession periods of the sample nuclear spins where the sensor does not participate. Thus, our method leads to high spectral resolutions ultimately limited by the coherence of the nuclear spin signal.

2.
Philos Trans A Math Phys Eng Sci ; 380(2239): 20210271, 2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36335951

ABSTRACT

We present an invariant-based quantum control scheme leading to a highly monochromatic ion beam from a Paul trap. Our protocol is implementable by supplying the segmented electrodes in the trap with voltages of the order of volts. This mitigates the impact of fluctuations in previous designs and leads to a low-dispersion beam of ions. Moreover, our proposal does not rely on sympathetically cooling ions, which bypasses the need of loading different species in the trap-namely, the propelled ion and, e.g. a [Formula: see text] to exert sympathetic cooling-significantly incrementing the repetition rate of the launching procedure. Our scheme is based on an invariant operator linear in position and momentum, which enables us to control the average extraction energy and the outgoing momentum spread. In addition, we propose a sequential operation to tailor the transversal properties of the beam before the ejection to minimize the impact spot and to increase the lateral resolution of the implantation. This article is part of the theme issue 'Shortcuts to adiabaticity: theoretical, experimental and interdisciplinary perspectives'.

3.
Sci Rep ; 7(1): 5753, 2017 07 18.
Article in English | MEDLINE | ID: mdl-28720807

ABSTRACT

We study the shuttling of an atom in a trap with controllable position and frequency. Using invariant-based inverse engineering, protocols in which the trap is simultaneously displaced and expanded are proposed to speed up transport between stationary trap locations as well as launching processes with narrow final-velocity distributions. Depending on the physical constraints imposed, either simultaneous or sequential approaches may be faster. We consider first a perfectly harmonic trap, and then extend the treatment to generic traps. Finally, we apply this general framework to a double-well potential to separate different motional states with different launching velocities.

SELECTION OF CITATIONS
SEARCH DETAIL
...