Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(8): e2308729121, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38354265

ABSTRACT

On cooling from the melt, plutonium (Pu) undergoes a series of structural transformations accompanied by a ≈ 28% reduction in volume from its δ phase to its α phase at low temperatures. While Pu's partially filled 5f-electron shells are known to be involved, their precise role in the transformations has remained unclear. By using calorimetry measurements on α-Pu and gallium-stabilized δ-Pu combined with resonant ultrasound and X-ray scattering data to account for the anomalously large softening of the lattice with temperature, we show here that the difference in electronic entropy between the α and δ phases dominates over the difference in phonon entropy. Rather than finding an electronic specific heat characteristic of broad f-electron bands in α-Pu, as might be expected to occur within a Kondo collapsed phase in analogy with cerium, we find it to be indicative of flatter subbands. An important role played by Pu's 5f electrons in the formation of its larger unit cell α phase comprising inequivalent lattice sites and varying bond lengths is therefore suggested.

2.
Inorg Chem ; 52(2): 953-64, 2013 Jan 18.
Article in English | MEDLINE | ID: mdl-23297735

ABSTRACT

Rare-earth metal germanides with the general formula RE(4)Ge(7) (RE = La, Ce, Pr, Nd, Sm) have been synthesized using the In-flux technique. Their structures have been established from single-crystal and powder X-ray diffraction, and the structural elucidation has been aided by electron diffraction. These compounds represent superstructures of the α-ThSi(2) structure type through the long- and/or short-range vacancy ordering. RE(4)Ge(7) (RE = Pr, Nd, Sm) appear to be commensurately modulated 4-fold superstructure of REGe(2-x) (x = 1/4), while coexistence of commensurate and incommensurate modulation is revealed in the La- and Ce-analogues. These results shed more light on the structural evolution of the REGe(2-x) phases as function of the vacancy concentration and nature of the rare-earth metal. Measurements of the magnetic susceptibilities on well-characterized single-crystals show ferromagnetic, antiferromagnetic, and even spin-glass-like behaviors. Mean-field theory is used to evaluate the correlations between structural and magnetic property data. Measurements on the electrical resistivities and the heat capacities are also presented and discussed.

3.
J Phys Condens Matter ; 24(1): 015601, 2012 Jan 11.
Article in English | MEDLINE | ID: mdl-22133582

ABSTRACT

We report the synthesis, structure, and physical properties of single crystals of CePt(2)In(7). Single crystal x-ray diffraction analysis confirms the tetragonal I4/mmm structure of CePt(2)In(7) with unit cell parameters a = 4.5886(6) Å, c = 21.530(6) Å and V = 453.32(14) Å(3). The magnetic susceptibility, heat capacity, Hall effect and electrical resistivity measurements are all consistent with CePt(2)In(7) undergoing an antiferromagnetic order transition at T(N) = 5.5 K, which is field independent up to 9 T. Above T(N), the Sommerfeld coefficient of specific heat is γ ≈ 300 mJ mol(-1) K(-2), which is characteristic of an enhanced effective mass of itinerant charge carriers. The electrical resistivity is typical of heavy-fermion behavior and gives a residual resistivity ρ(0) ∼ 0.2 µΩ cm, indicating good crystal quality. CePt(2)In(7) also shows moderate anisotropy of the physical properties that is comparable to structurally related CeMIn(5) (M = Co, Rh, Ir) heavy-fermion superconductors.

4.
Materials (Basel) ; 4(11): 2042-2056, 2011 Nov 17.
Article in English | MEDLINE | ID: mdl-28824122

ABSTRACT

Many second phase additions to YBa2Cu3O7-x (YBCO) films, in particular those that self-assemble into aligned nanorod and nanoparticle structures, enhance performance in self and applied fields. Of particular interest for additions are Ba-containing perovskites that are compatible with YBCO. In this report, we discuss the addition of Ba2YRuO6 to bulk and thick-film YBCO. Sub-micron, randomly oriented particles of this phase were found to form around grain boundaries and within YBCO grains in bulk sintered pellets. Within the limits of EDS, no Ru substitution into the YBCO was observed. Thick YBCO films were grown by pulsed laser deposition from a target consisting of YBa2Cu3Oy with 5 and 2.5 mole percent additions of Ba2YRuO6 and Y2O3, respectively. Films with enhanced in-field performance contained aligned, self-assembled Ba2YRuO6 nanorods and strained Y2O3 nanoparticle layers. A 0.9 µm thick film was found to have a self-field critical current density (Jc) of 5.1 MA/cm² with minimum Jc(Q, H=1T) of 0.75 MA/cm². Conversely, Jc characteristics were similar to YBCO films without additions when these secondary phases formed as large, disordered phases within the film. A 2.3 µm thick film with such a distribution of secondary phases was found to have reduced self-field Jc values of 3.4 MA/cm² at 75.5 K and Jc(min, Q, 1T) of 0.4 MA/cm².

5.
Inorg Chem ; 49(4): 1773-83, 2010 Feb 15.
Article in English | MEDLINE | ID: mdl-20073492

ABSTRACT

Reported are the synthesis and the structural characterization of two members of a new homologous series of polar intermetallic compounds, which exist only with mixed alkaline-earth and rare-earth metal cations. Crystals of (Eu(1-x)Ca(x))(4)In(3)Ge(4) (0.35(1)

6.
Inorg Chem ; 48(14): 6641-51, 2009 Jul 20.
Article in English | MEDLINE | ID: mdl-19419182

ABSTRACT

A series of magnesium-substituted rare-earth metal germanides with a general formula RE(5-x)Mg(x)Ge(4) (x approximately = 1.0-2.3; RE = Gd-Tm, Lu, Y) have been synthesized by high-temperature reactions and structurally characterized by single-crystal X-ray diffraction. These compounds crystallize with the common Gd(5)Si(4) type structure in the orthorhombic space group Pnma (No. 62; Z = 4; Pearson's code oP36) and do not appear to undergo temperature-induced crystallographic phase transitions down to 120 K. Replacing rare-earth metal atoms with Mg, up to nearly 45% at., reduces the valence electron count and is clearly expressed in the subtle changes of the Ge-Ge and metal-metal bonding. Magnetization measurements as a function of the temperature and the applied field reveal complex magnetic structures at cryogenic temperatures and Curie-Weiss paramagnetic behavior at higher temperatures. The observed local moment magnetism is consistent with RE(3+) ground states in all cases. In the magnetically ordered phases, the magnetization cannot reach saturation in fields up to 50 kOe. The structural trends across the series and the variations of the magnetic properties as a function of the Mg content are also discussed.

7.
Inorg Chem ; 46(21): 8690-7, 2007 Oct 15.
Article in English | MEDLINE | ID: mdl-17877339

ABSTRACT

The new binary compound Gd(3)Ge(4) has been synthesized and its structure has been determined from single-crystal X-ray diffraction. Gd(3)Ge(4) crystallizes in the orthorhombic space group Cmcm (No. 63) with unit cell parameters a = 4.0953(11) A, b = 10.735(3) A, c = 14.335(4) A, and Z = 4. Its structure can be described as corrugated layers of germanium atoms with gadolinium atoms enclosed between them. The bonding arrangement in Gd(3)Ge(4) can also be derived from that of the known compound GdGe (CrB type) through cleavage of the (infinity)(1)[Ge(2)] zigzag chains in GdGe and a subsequent insertion of an extra germanium atom between the resulting triangular fragments. Formally, these characteristics represent isotypism with the Er(3)Ge(4) type (Pearson's oC28). However, re-examination of the crystallography in the whole RE(3)Ge(4) series (RE = Y, Tb-Tm) revealed discrepancies and called into question the accuracy of the originally determined structures. This necessitated a new rationalization of the bonding, which is provided in the context of a comparative discussion concerning both the original and revised structure models, along with an analysis of the trends across the series. The temperature dependence of the magnetic susceptibility of Gd(3)Ge(4) shows that it is paramagnetic at room temperature and undergoes antiferromagnetic ordering below 29 K. Magnetization, resistivity, and calorimetry data for several other members of the RE(3)Ge(4) family are presented as well.

8.
Inorg Chem ; 45(18): 7286-94, 2006 Sep 04.
Article in English | MEDLINE | ID: mdl-16933930

ABSTRACT

The crystal structures and the magnetic properties of three new binary rare-earth intermetallic phases are reported. alpha-Sm3Ge5 and beta-Sm3Ge5 and Gd3Ge5 have been prepared from the corresponding elements through high-temperature reactions using the flux-growth method. The structures of the three compounds have been established using single-crystal X-ray diffraction: alpha-Sm3Ge5 crystallizes with its own type in the hexagonal space group P2c (No. 190) with cell parameters a = 6.9238(11) A, c = 8.491(3) A, and Z = 2, whereas beta-Sm3Ge5 adopts the face-centered orthorhombic Y3Ge5 type with space group Fdd2 (No. 43) and with cell parameters a = 5.8281(6) A, b = 17.476(2) A, c = 13.785(2) A, and Z = 8. The orthorhombic Gd3Ge5 with cell parameters a = 5.784(2) A, b = 17.355(6) A, and c = 13.785(5) A is isostructural with beta-Sm3Ge5. The structures of the title compounds can be described as AlB(2) and alpha-ThSi2 derivatives with long-range ordering of the germanium vacancies. Temperature-dependent DC magnetization (5-300 K) measurements show evidence of antiferromagnetic ordering below ca. 30 and 10 K for alpha-Sm3Ge5 and beta-Sm3Ge5, respectively. Gd3Ge5 undergoes two successive magnetic transitions below ca. 15 and 11 K. The temperature dependence of the resistivity and heat capacity of Gd3Ge5 are discussed as well.

9.
J Am Chem Soc ; 128(11): 3532-3, 2006 Mar 22.
Article in English | MEDLINE | ID: mdl-16536522

ABSTRACT

Reported are the synthesis and the structural characterization of a new derivative of the RE5Tt4 family (RE = Rare-earth; Tt = Tetrel, = Si, Ge, i.e., group 14 element), Yb5-xMgxGe4 (x approximately 1). Crystal data for Yb4.04(1)Mg0.96(1)Ge4 at 23 degrees C: orthorhombic, space group Pnma (No. 62), Z = 4; a = 7.155(2) A, b = 14.769(5) A, c = 7.688(2) A; V = 812.5(4) A3. This phase is an example of a substitution of lanthanide metal (Yb) with a nonmagnetic element (Mg) within this structure type. Its structure can alternatively be described as an intergrowth of the hypothetical Yb2MgGe2, which features flat infinite [MgGe2]4- layers and the hypothetical YbGe with [Ge2]6- dimers. The flat [MgGe2]4- layers propagate in two dimensions (a and c), and they are offset by a distance of 1/4.a with respect to one another and are interspaced with layers of [Ge2]6- dimers and Yb cations filling the space between them. According to the structural and physical property data, Yb4MgGe4 is a heterogeneous mixed-valent compound, i.e. a system where one of the two symmetry-inequivalent Yb sites has atoms in closed-shell Yb2+ configuration, whereas the Yb3+ cations occupy a different crystallographic site.

SELECTION OF CITATIONS
SEARCH DETAIL
...