Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PCN Rep ; 3(1): e164, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38868477

ABSTRACT

Aim: This study aimed to identify atypical hubs in the whole-brain networks of patients with schizophrenia (SZ) and examine the effects of antipsychotic medications, using electroencephalography (EEG) data. Methods: We estimated the functional connectivity across all electrodes by applying the phase lag index to the EEG signals of 21 drug-naïve patients with SZ and 31 age-matched healthy controls. Betweenness centrality (BC), a measure of hub status, was calculated for each electrode and frequency band. Data from 14 patients were re-evaluated after initiating treatment with antipsychotic medications. Results: BC values decreased significantly at the Fz site in the beta band, decreased significantly at Pz in the gamma band, and increased significantly at O1 in the gamma band among patients with SZ. These changes persisted after antipsychotic treatment and were unrelated to clinical symptoms. Conclusion: The abnormal hub topology we observed, especially in the high-frequency band, may reflect the pathophysiology of SZ, and this study highlights the utility of BC analysis of EEG data for detecting alterations in the whole-brain networks of patients with SZ.

2.
Front Aging Neurosci ; 15: 1130428, 2023.
Article in English | MEDLINE | ID: mdl-37139091

ABSTRACT

Introduction: Maintaining high cognitive functions is desirable for "wellbeing" in old age and is particularly relevant to a super-aging society. According to their individual cognitive functions, optimal intervention for older individuals facilitates the maintenance of cognitive functions. Cognitive function is a result of whole-brain interactions. These interactions are reflected in several measures in graph theory analysis for the topological characteristics of functional connectivity. Betweenness centrality (BC), which can identify the "hub" node, i.e., the most important node affecting whole-brain network activity, may be appropriate for capturing whole-brain interactions. During the past decade, BC has been applied to capture changes in brain networks related to cognitive deficits arising from pathological conditions. In this study, we hypothesized that the hub structure of functional networks would reflect cognitive function, even in healthy elderly individuals. Method: To test this hypothesis, based on the BC value of the functional connectivity obtained using the phase lag index from the electroencephalogram under the eyes closed resting state, we examined the relationship between the BC value and cognitive function measured using the Five Cognitive Functions test total score. Results: We found a significant positive correlation of BC with cognitive functioning and a significant enhancement in the BC value of individuals with high cognitive functioning, particularly in the frontal theta network. Discussion: The hub structure may reflect the sophisticated integration and transmission of information in whole-brain networks to support high-level cognitive function. Our findings may contribute to the development of biomarkers for assessing cognitive function, enabling optimal interventions for maintaining cognitive function in older individuals.

SELECTION OF CITATIONS
SEARCH DETAIL
...