Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Membr Biol ; 253(3): 221-228, 2020 06.
Article in English | MEDLINE | ID: mdl-32328687

ABSTRACT

It was reported that nitric oxide (NO) donors increased the permeability of water-soluble compounds across intestinal membrane with neither loss of cell viability nor release of lactate dehydrogenase. Therefore, the detail mechanism of action of NO donors on the gastrointestinal membrane has yet to be clarified. We previously reported the possibility of the enhancing effect of the NO donor on the membrane permeability via transcellular route. The purpose of this study is to clarify the mechanism of the membrane permeation-enhancing effect via the transcellular route by sodium nitroprusside (SNP), which is one of the NO donors. The effect of SNP on membrane permeation was examined by the in vitro sac method using rat jejunum. SNP increased the membrane permeation of rhodamine 123 same as using N-acetyl-L-cysteine and dithiothreitol which removes unstirred water layer (UWL). Moreover, SNP increased the membrane permeation of antipyrine and ß-naphthol, which are transcellular markers. And it was also investigated the expression levels of mucins (MUCs) which are construction component of UWL and the slight change of MUCs expression by SNP was shown. It was suggested that the expression balance of MUCs is necessary to regulate transcellular permeation, and SNP may affect to UWL. This finding was considered useful for highly lipophilic drugs for which membrane permeation is restricted by the UWL.


Subject(s)
Cell Membrane Permeability/drug effects , Intestinal Absorption/drug effects , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Jejunum , Nitroprusside/pharmacology , Animals , Biomarkers , Drug Synergism , Gene Expression , Humans , Indicators and Reagents , Male , Mucins/genetics , Mucins/metabolism , Rats
2.
CPT Pharmacometrics Syst Pharmacol ; 7(3): 186-196, 2018 03.
Article in English | MEDLINE | ID: mdl-29368402

ABSTRACT

This study aimed to construct a physiologically based pharmacokinetic (PBPK) model of rifampicin that can accurately and quantitatively predict complex drug-drug interactions (DDIs) involving its saturable hepatic uptake and auto-induction. Using in silico and in vitro parameters, and reported clinical pharmacokinetic data, rifampicin PBPK model was built and relevant parameters for saturable hepatic uptake and UDP-glucuronosyltransferase (UGT) auto-induction were optimized by fitting. The parameters for cytochrome P450 (CYP) 3A and CYP2C9 induction by rifampicin were similarly optimized using clinical DDI data with midazolam and tolbutamide as probe substrates, respectively. For validation, our current PBPK model was applied to simulate complex DDIs with glibenclamide (a substrate of CYP3A/2C9 and hepatic organic anion transporting polypeptides (OATPs)). Simulated results were in quite good accordance with the observed data. Altogether, our constructed PBPK model of rifampicin demonstrates the robustness and utility in quantitatively predicting CYP3A/2C9 induction-mediated and/or OATP inhibition-mediated DDIs with victim drugs.


Subject(s)
Cytochrome P-450 CYP2C9/metabolism , Cytochrome P-450 CYP3A/metabolism , Rifampin/pharmacokinetics , Computer Simulation , Drug Interactions , Enzyme Induction/drug effects , Glucuronosyltransferase/metabolism , Glyburide/pharmacokinetics , Glyburide/pharmacology , Humans , Models, Biological , Rifampin/pharmacology
3.
J Pharm Sci ; 106(9): 2704-2714, 2017 09.
Article in English | MEDLINE | ID: mdl-28465151

ABSTRACT

The cause of nonlinear pharmacokinetics (PK) (more than dose-proportional increase in exposure) of a urea derivative under development (compound A: anionic compound [pKa: 4.4]; LogP: 6.5; and plasma protein binding: 99.95%) observed in a clinical trial was investigated. Compound A was metabolized by CYP3A4, UGT1A1, and UGT1A3 with unbound Km of 3.3-17.8 µmol/L. OATP1B3-mediated uptake of compound A determined in the presence of human serum albumin (HSA) showed that unbound Km and Vmax decreased with increased HSA concentration. A greater decrease in unbound Km than in Vmax resulted in increased uptake clearance (Vmax/unbound Km) with increased HSA concentration, the so-called albumin-mediated uptake. At 2% HSA concentration, unbound Km was 0.00657 µmol/L. A physiologically based PK model assuming saturable hepatic uptake nearly replicated clinical PK of compound A. Unbound Km for hepatic uptake estimated from the model was 0.000767 µmol/L, lower than the in vitro unbound Km at 2% HSA concentration, whereas decreased Km with increased concentration of HSA in vitro indicated lower Km at physiological HSA concentration (4%-5%). In addition, unbound Km values for metabolizing enzymes were much higher than unbound Km for OATP1B3, indicating that the nonlinear PK of compound A is primarily attributed to saturated OATP1B3-mediated hepatic uptake of compound A.


Subject(s)
Liver/metabolism , Serum Albumin, Human/metabolism , Urea/analogs & derivatives , Urea/pharmacokinetics , Adult , Biological Availability , Biological Transport , Computer Simulation , Cytochrome P-450 CYP3A/metabolism , Female , Glucuronosyltransferase/metabolism , Humans , Male , Models, Biological , Protein Binding , Urea/metabolism
4.
Int J Pharm ; 453(2): 363-70, 2013 Sep 10.
Article in English | MEDLINE | ID: mdl-23742974

ABSTRACT

Pharmaceutical excipients should not disturb the effects of drug therapy. In recent years, however, it has been reported that excipients induce some changes to the tight junction (TJ) and P-glycoprotein (P-gp), which can affect drug disposition. In this study, we examined the effects of 20 common pharmaceutical excipients from different classes on mucosal membrane and the differences of such effects among regions of the small intestine. We used the in vitro sac method in rat jejunum and ileum to study the effects of excipients on the membrane permeation of 5(6)-carboxyfluorescein (5-CF). 5-CF was used as a model of water-soluble compounds. In some dosage conditions of methyl-ß-cyclodextrin, the membrane permeability of 5-CF was significantly increased in the jejunum, but such change was not observed in the ileum. Similarly, in the cases of sodium carboxymethyl starch, low-substituted hydroxypropyl cellulose and croscarmellose sodium, the membrane permeability of 5-CF was significantly increased in the jejunum, but no change was observed in the ileum. On the other hand, in both the jejunum and the ileum, the membrane permeation of 5-CF was decreased with 0.02% (w/v) hydroxypropyl cellulose, but significantly increased with it at 0.20% (w/v). It was shown that excipients affected the membrane permeability of water-soluble compounds via the paracellular route, and these effects on absorption differed among regions of the small intestine. Moreover, in the case of 20 excipients, not only an increase in membrane permeability but also a decrease was observed. Therefore, it was suggested that a more effective formulation could be designed by changing the combination of excipients.


Subject(s)
Excipients/pharmacology , Fluoresceins/pharmacology , Fluorescent Dyes/pharmacology , Intestinal Absorption/drug effects , Intestinal Mucosa/drug effects , Animals , Cell Membrane Permeability/drug effects , Ileum/drug effects , Ileum/metabolism , In Vitro Techniques , Intestinal Mucosa/metabolism , Jejunum/drug effects , Jejunum/metabolism , Male , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...