Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Pulm Pharmacol Ther ; 23(2): 107-14, 2010 Apr.
Article in English | MEDLINE | ID: mdl-19879371

ABSTRACT

BACKGROUND: Disruption of fibrinolytic homeostasis participates in the pathogenesis of severe lung diseases like acute respiratory distress syndrome (ARDS), idiopathic pulmonary fibrosis (IPF) and plastic bronchitis. We have developed a pulmonary formulation of tissue plasminogen activator (pf-tPA) that withstands nebulization and reaches the lower airways. OBJECTIVE: Since treatment of ARDS, IPF and plastic bronchitis will require repeated administration of pf-tPA, the purpose of this study was to determine the safety of prolonged, repeated administration of pf-mouse tPA (pf-mtPA) to the lungs of healthy mice. METHODS: Male and female B6C3F1 mice received one of two intratracheal (IT) doses of either nebulized pf-mtPA or sterile saline twice daily for 28 days. Weekly blood samples were collected to estimate hematocrit. Following the dosing period, animals were sacrificed for gross necropsy, the acquisition of bronchoalveolar lavage fluid (BALF), and histological assessment of the lungs and other major organs. RESULTS: The low dose of pf-mtPA was well tolerated by both female and male mice. However, female and male mice that received the high dose experienced a 16% and 8% incidence, respectively, of fatal pulmonary hemorrhage. Although male mice had a lower incidence of bleeding, these events occurred at lower mean (+/-S.E.) doses (1.06+/-0.02mg/kg/d) of pf-mtPA compared with females (1.48+/-0.03mg/kg/d, p<0.001). In addition, male mice had higher BALF mtPA concentrations. Bleeding occurred six and 12 days in male and female mice, respectively, after the initiation of dosing suggesting that mtPA accumulated in the lungs. CONCLUSION: This study established a safe dose range and demonstrated the feasibility of prolonged, repeated dosing of pf-tPA. High doses (> or =1mg/kg/d) were associated with pulmonary hemorrhage that may be due, in part, to accumulation of drug in the lungs.


Subject(s)
Fibrinolytic Agents/toxicity , Hemorrhage/chemically induced , Lung/drug effects , Tissue Plasminogen Activator/toxicity , Administration, Inhalation , Animals , Bronchoalveolar Lavage Fluid/chemistry , Dose-Response Relationship, Drug , Drug Administration Schedule , Drug Delivery Systems , Female , Fibrinolytic Agents/administration & dosage , Fibrinolytic Agents/pharmacokinetics , Lung/metabolism , Lung Diseases/drug therapy , Male , Mice , Sex Factors , Tissue Distribution , Tissue Plasminogen Activator/administration & dosage , Tissue Plasminogen Activator/pharmacokinetics
2.
Clin Exp Pharmacol Physiol ; 35(12): 1454-60, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18671720

ABSTRACT

1. Tissue plasminogen activator (tPA) has both fibrinolytic and anti-inflammatory activity. These properties may be useful in treating inflammatory lung diseases, such as acute respiratory distress syndrome (ARDS). 2. We have previously demonstrated the feasibility of targeted pulmonary delivery of tPA. As part of our research to develop a clinically viable pulmonary formulation of tPA, we assessed the tolerability and incidence of haemorrhage associated with the administration of a pulmonary formulation of mouse tPA (pf-mtPA). 3. Intratracheal doses of nebulized pf-mtPA or sterile saline were administered with increasing frequency to male and female B6C3F1 mice. After dosing, the mice entered a recovery period, after which they were killed and their lungs were lavaged and harvested. Post-mortem gross necropsy was performed and all major organs were assessed histologically for haemorrhage. The bronchoalveolar lavage fluid was assessed for markers of lung injury. 4. Mouse tPA that was formulated to mimic a previously characterized human pf-tPA was well tolerated when given intratracheally with increasing dosing frequency. The administration of pf-mtPA did not result in any detectable haemorrhagic-related events or signs of lung injury. 5. The results of the present longitudinal study demonstrate that a maximally feasible dose of pf-mtPA (3 mg/kg) can be given frequently over a short period of time (12 h) without haemorrhagic complications. Although these data were generated in a healthy mouse model, they provide support for the continued evaluation of pf-tPA for the treatment of pulmonary diseases, such as ARDS.


Subject(s)
Lung/drug effects , Tissue Plasminogen Activator/administration & dosage , Administration, Inhalation , Animals , Chemistry, Pharmaceutical , Dosage Forms , Dose-Response Relationship, Drug , Drug Administration Schedule , Female , Longitudinal Studies , Lung/physiology , Male , Mice , Time Factors , Tissue Plasminogen Activator/chemistry
3.
Am J Physiol Lung Cell Mol Physiol ; 295(1): L152-61, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18441091

ABSTRACT

Magnetic resonance imaging (MRI) and metabolic nuclear magnetic resonance (NMR) spectroscopy are clinically available but have had little application in the quantification of experimental lung injury. There is a growing and unfulfilled need for predictive animal models that can improve our understanding of disease pathogenesis and therapeutic intervention. Integration of MRI and NMR could extend the application of experimental data into the clinical setting. This study investigated the ability of MRI and metabolic NMR to detect and quantify inflammation-mediated lung injury. Pulmonary inflammation was induced in male B6C3F1 mice by intratracheal administration of IL-1beta and TNF-alpha under isoflurane anesthesia. Mice underwent MRI at 2, 4, 6, and 24 h after dosing. At 6 and 24 h lungs were harvested for metabolic NMR analysis. Data acquired from IL-1beta+TNF-alpha-treated animals were compared with saline-treated control mice. The hyperintense-to-total lung volume (HTLV) ratio derived from MRI was higher in IL-1beta+TNF-alpha-treated mice compared with control at 2, 4, and 6 h but returned to control levels by 24 h. The ability of MRI to detect pulmonary inflammation was confirmed by the association between HTLV ratio and histological and pathological end points. Principal component analysis of NMR-detectable metabolites also showed a temporal pattern for which energy metabolism-based biomarkers were identified. These data demonstrate that both MRI and metabolic NMR have utility in the detection and quantification of inflammation-mediated lung injury. Integration of these clinically available techniques into experimental models of lung injury could improve the translation of basic science knowledge and information to the clinic.


Subject(s)
Interleukin-1beta/toxicity , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Pneumonia/diagnostic imaging , Pneumonia/metabolism , Tumor Necrosis Factor-alpha/toxicity , Animals , Disease Models, Animal , Lung/diagnostic imaging , Lung/metabolism , Lung Injury , Male , Mice , Pneumonia/chemically induced , Radiography , Time Factors
4.
Am J Physiol Lung Cell Mol Physiol ; 292(6): L1572-9, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17351060

ABSTRACT

Neutrophils are the primary inflammatory cell in smokers' lungs, but little is known about the ability of cigarette smoke to modulate neutrophil function. Neutrophils undergo caspase-3-dependent spontaneous, as well as phagocytosis-induced, apoptosis. This study investigated the ability of cigarette smoke extract (CSE) to alter neutrophil caspase-3 activity, apoptosis, and phagocytosis. CSE treatment resulted in a dramatic suppression of neutrophil caspase-3-like activity, which correlated with reduced cleavage of glutamate-L-cysteine ligase catalytic subunit, a known target of active caspase-3. CSE did not affect procaspase-3 processing to its active fragment, suggesting a direct effect of CSE on active caspase-3. Consistent with this, CSE inhibited active recombinant caspase-3 activity, which was abolished by dithiothreitol, suggesting a redox-sensitive mechanism. CSE-induced suppression of caspase-3 activity did not alter spontaneous apoptosis but did impair phagocytic activity. Since CSE treatment resulted in profound suppression of caspase-3 activity but did not alter apoptosis, the possibility of a threshold level of caspase-3 activity was investigated. CSE reduced caspase-3 activity in a concentration-dependent manner. Despite near complete suppression of caspase-3 activity, spontaneous apoptosis was not altered. Conversely, treatment with the pan-caspase inhibitor, Z-Val-Ala-Asp-fluoromethylketone, reduced spontaneous apoptosis. These data demonstrate that CSE does not suppress caspase-3 activity below a threshold level to prevent spontaneous apoptosis, but the level of inhibition is sufficient to impair neutrophil phagocytic activity. These divergent functions of caspase-3 may contribute to the persistence of neutrophils in the lungs of smokers, as well as be a factor in their higher incidence of community-acquired pneumonia.


Subject(s)
Caspase 3/metabolism , Neutrophils/immunology , Phagocytosis/immunology , Pulmonary Disease, Chronic Obstructive/immunology , Smoking/adverse effects , Smoking/immunology , Amino Acid Chloromethyl Ketones/pharmacology , Apoptosis/immunology , Caspase Inhibitors , Cysteine Proteinase Inhibitors/pharmacology , Humans , In Vitro Techniques , Tobacco Smoke Pollution
SELECTION OF CITATIONS
SEARCH DETAIL
...