Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Biol ; 223(Pt 8)2020 04 14.
Article in English | MEDLINE | ID: mdl-32165437

ABSTRACT

Seasonal changes in maximal thermogenic capacity (Msum) in wild black-capped chickadees suggests that adjustments in metabolic performance are slow and begin to take place before winter peaks. However, when mean minimal ambient temperature (Ta) reaches -10°C, the chickadee phenotype appears to provide enough spare capacity to endure days with colder Ta, down to -20°C or below. This suggests that birds could also maintain a higher antioxidant capacity as part of their cold-acclimated phenotype to deal with sudden decreases in temperature. Here, we tested how environmental mismatch affected oxidative stress by comparing cold-acclimated (-5°C) and transition (20°C) phenotypes in chickadees exposed to an acute 15°C drop in temperature with that of control individuals. We measured superoxide dismutase, catalase and glutathione peroxidase activities, as well as lipid peroxidation damage and antioxidant scavenging capacity in pectoralis muscle, brain, intestine and liver. We generally found differences between seasonal phenotypes and across tissues, but no differences with respect to an acute cold drop treatment. Our data suggest oxidative stress is closely matched to whole-animal physiology in cold-acclimated birds compared with transition birds, implying that changes to the oxidative stress system happen slowly.


Subject(s)
Acclimatization , Songbirds , Animals , Cold Temperature , Oxidative Stress , Thermogenesis
2.
Fish Physiol Biochem ; 45(2): 499-510, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30397840

ABSTRACT

Estuarine environments are characterized by cyclical fluctuations in tides, with tidal shifts drastically, frequently, and acutely altering temperature, dissolved oxygen, and salinity. Despite these ecological challenges, the sheepshead minnow, Cyprinodon variegatus, seems to dominate estuarine landscapes. Here, we held sheepshead minnows to four temperature treatment groups for 1 month. We then tested whether temperature exposure had an effect on acute hypoxia tolerance via oxidative stress. We measured superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities, as well as total antioxidant capacity and lipid peroxidation (LPO) damage in white muscle. We found that exposure to increasing temperatures (15, 20, 25, and 30 °C) for 1 month led to significantly higher CTmax in sheepshead minnows. We also found that CAT activity significantly increased in the 20 and 25 °C temperature treatment groups, whereas it did not change between control and hypoxia trials. SOD activity was significantly higher in control groups of the 15 and 30 °C temperature treatment groups compared with hypoxia groups of these same temperature treatments. GPx activity was significantly lower in the 30 °C temperature treatment group regardless of control or hypoxia trials. Hydroxyl scavenging capacity varied across temperature treatment and control/hypoxia groups. Peroxyl scavenging capacity and LPO damage showed no significant differences across temperature treatment groups or between control and hypoxia trials.


Subject(s)
Killifishes/physiology , Oxidative Stress , Oxygen , Temperature , Adaptation, Physiological , Animals , Lipid Peroxidation
SELECTION OF CITATIONS
SEARCH DETAIL
...