Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
bioRxiv ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38979136

ABSTRACT

HIV-1 entry kinetics reflect the fluid motion of the HIV envelope glycoprotein through at least three major structural configurations that drive virus-cell membrane fusion. The lifetime of each state is an important component of potency for inhibitors that target them. We used the time-of-addition inhibitor assay and a novel analytical strategy to define the kinetics of pre-hairpin exposure (using T20) and co-receptor engagement (via. maraviroc), through a characteristic delay metric, across a variety of naturally occurring HIV Env isolates. Among 257 distinct HIV-1 envelope isolates we found a remarkable breadth of T20 and maraviroc delays ranging from as early as 30 seconds to as late as 60 minutes. The most extreme delays were observed among transmission-linked clade C isolates. We identified four single-residue determinants of late T20 and maraviroc delays that are associated with either receptor engagement or gp41 function. Comparison of these delays with T20 sensitivity suggest co-receptor engagement and fusogenic activity in gp41 act cooperatively but sequentially to drive entry. Our findings support current models of entry where co-receptor engagement drives gp41 eclipse and have strong implications for the design of entry inhibitors and antibodies that target transient entry states. Author Summary: The first step of HIV-1 infection is entry, where virus-cell membrane fusion is driven by the HIV-1 envelope glycoprotein through a series of conformational changes. Some of the most broadly active entry inhibitors work by binding conformations that exist only transiently during entry. The lifetimes of these states and the kinetics of entry are important elements of inhibitor activity for which little is known. We demonstrate a remarkable range of kinetics among 257 diverse HIV-1 isolates and find that this phenotype is highly flexible, with multiple single-residue determinants. Examination of the kinetics of two conformational landmarks shed light on novel kinetic features that offer new details about the role of co-receptor engagement and provide a framework to explain entry inhibitor synergy.

2.
J Immunol ; 212(11): 1693-1705, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38578283

ABSTRACT

NK cells in the peripheral blood of severe COVID-19 patients exhibit a unique profile characterized by activation and dysfunction. Previous studies have identified soluble factors, including type I IFN and TGF-ß, that underlie this dysregulation. However, the role of cell-cell interactions in modulating NK cell function during COVID-19 remains unclear. To address this question, we combined cell-cell communication analysis on existing single-cell RNA sequencing data with in vitro primary cell coculture experiments to dissect the mechanisms underlying NK cell dysfunction in COVID-19. We found that NK cells are predicted to interact most strongly with monocytes and that this occurs via both soluble factors and direct interactions. To validate these findings, we performed in vitro cocultures in which NK cells from healthy human donors were incubated with monocytes from COVID-19+ or healthy donors. Coculture of healthy NK cells with monocytes from COVID-19 patients recapitulated aspects of the NK cell phenotype observed in severe COVID-19, including decreased expression of NKG2D, increased expression of activation markers, and increased proliferation. When these experiments were performed in a Transwell setting, we found that only CD56bright CD16- NK cells were activated in the presence of severe COVID-19 patient monocytes. O-link analysis of supernatants from Transwell cocultures revealed that cultures containing severe COVID-19 patient monocytes had significantly elevated levels of proinflammatory cytokines and chemokines, as well as TGF-ß. Collectively, these results demonstrate that interactions between NK cells and monocytes in the peripheral blood of COVID-19 patients contribute to NK cell activation and dysfunction in severe COVID-19.


Subject(s)
COVID-19 , Cell Communication , Coculture Techniques , Killer Cells, Natural , Lymphocyte Activation , Monocytes , SARS-CoV-2 , Humans , Killer Cells, Natural/immunology , COVID-19/immunology , Monocytes/immunology , SARS-CoV-2/immunology , Lymphocyte Activation/immunology , Cell Communication/immunology , Female , Male , Middle Aged , Cytokines/immunology , Cytokines/metabolism , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/immunology , Cells, Cultured
3.
J Pediatric Infect Dis Soc ; 12(12): 602-609, 2023 Dec 16.
Article in English | MEDLINE | ID: mdl-37815035

ABSTRACT

BACKGROUND: IMPAACT 2014 study is a phase I/II, multicenter, open-label, nonrandomized study of doravirine (DOR) co-formulated with lamivudine (3TC) and tenofovir disoproxil fumarate (TDF) as fixed-dose combination (DOR FDC) in adolescents with HIV-1. We report the efficacy, safety, and tolerability of DOR FDC through 96 weeks. METHODS: Participants were adolescents aged 12 to <18 years who weighed at least 45 kg and who were either antiretroviral (ARV)-naïve or virologically suppressed without documented resistance mutations to DOR/3TC/TDF. The efficacy endpoint was the proportion of participants with HIV-1 RNA <40 copies/mL assessed at weeks 48 and 96 using the observed failure approach. Safety and tolerability outcomes were incidence of adverse events (AEs) and treatment discontinuations. RESULTS: A total of 45 adolescents, median age 15 (range, 12-17) years, 58% females, were enrolled and 2 (4.4%) participants were ARV naïve. Of the 45 participants, 42 (93.3%) completed the study and 41 (91.1%) completed the study treatment. At week 48, 41/42 (97.6%; 95% confidence interval [CI], 87.4-99.9) and week 96, 37/40 (92.5%; 95% CI, 79.6-98.4) participants had achieved or maintained HIV-1 RNA <40 copies/mL. There were no treatment-related discontinuations due to AEs and no drug-related AEs ≥grade 3 or deaths. CONCLUSIONS: We found once-daily dosing of DOR FDC to be safe and well tolerated for maintaining viral suppression through 96 weeks in adolescents living with HIV-1.


Subject(s)
Anti-HIV Agents , HIV Infections , HIV Seropositivity , Adolescent , Female , Humans , Male , Anti-HIV Agents/adverse effects , Anti-Retroviral Agents/therapeutic use , HIV Infections/drug therapy , Lamivudine/adverse effects , RNA/therapeutic use , Tenofovir/adverse effects , Treatment Outcome
4.
Metabolomics ; 19(11): 91, 2023 10 25.
Article in English | MEDLINE | ID: mdl-37880481

ABSTRACT

BACKGROUND: Preterm birth is a leading cause of death in children under the age of five. The risk of preterm birth is increased by maternal HIV infection as well as by certain antiretroviral regimens, leading to a disproportionate burden on low- and medium-income settings where HIV is most prevalent. Despite decades of research, the mechanisms underlying spontaneous preterm birth, particularly in resource limited areas with high HIV infection rates, are still poorly understood and accurate prediction and therapeutic intervention remain elusive. OBJECTIVES: Metabolomics was utilized to identify profiles of preterm birth among pregnant women living with HIV on two different antiretroviral therapy (ART) regimens. METHODS: This pilot study comprised 100 mother-infant dyads prior to antiretroviral initiation, on zidovudine monotherapy or on protease inhibitor-based antiretroviral therapy. Pregnancies that resulted in preterm births were matched 1:1 with controls by gestational age at time of sample collection. Maternal plasma and blood spots at 23-35 weeks gestation and infant dried blood spots at birth, were assayed using an untargeted metabolomics method. Linear regression and random forests classification models were used to identify shared and treatment-specific markers of preterm birth. RESULTS: Classification models for preterm birth achieved accuracies of 95.5%, 95.7%, and 80.7% in the untreated, zidovudine monotherapy, and protease inhibitor-based treatment groups, respectively. Urate, methionine sulfone, cortisone, and 17α-hydroxypregnanolone glucuronide were identified as shared markers of preterm birth. Other compounds including hippurate and N-acetyl-1-methylhistidine were found to be significantly altered in a treatment-specific context. CONCLUSION: This study identified previously known as well as novel metabolomic features of preterm birth in pregnant women living with HIV. Validation of these models in a larger, independent cohort is necessary to ascertain whether they can be utilized to predict preterm birth during a stage of gestation that allows for therapeutic intervention or more effective resource allocation.


Subject(s)
Anti-HIV Agents , HIV Infections , Pregnancy Complications, Infectious , Premature Birth , Infant , Child , Pregnancy , Infant, Newborn , Female , Humans , HIV Infections/drug therapy , Zidovudine/therapeutic use , Pregnant Women , Pregnancy Complications, Infectious/drug therapy , Anti-HIV Agents/therapeutic use , Pilot Projects , Metabolomics , Protease Inhibitors/therapeutic use
5.
AIDS ; 37(10): 1583-1591, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37199568

ABSTRACT

BACKGROUND: Infancy is an important developmental period when the microbiome is shaped. We hypothesized that earlier antiretroviral therapy (ART) initiation would attenuate HIV effects on microbiota in the mouth. METHODS: Oral swabs were collected from 477 children with HIV (CWH) and 123 children without (controls) at two sites in Johannesburg, South Africa. CWH had started ART less than 3 years of age; 63% less than 6 months of age. Most were well controlled on ART at median age 11 years when the swab was collected. Controls were age-matched and recruited from the same communities. Sequencing of V4 amplicon of 16S rRNA was done. Differences in microbial diversity and relative abundances of taxa were compared between the groups. RESULTS: CWH had lower alpha diversity than controls. Genus-level abundances of Granulicatella, Streptococcus, and Gemella were greater and Neisseria and Haemophilus less abundant among CWH than controls. Associations were stronger among boys. Associations were not attenuated with earlier ART initiation. Shifts in genus-level taxa abundances in CWH relative to controls were most marked in children on lopinavir/ritonavir regimens, with fewer shifts seen if on efavirenz ART regimens. CONCLUSION: A distinct profile of less diverse oral bacterial taxa was observed in school-aged CWH on ART compared with uninfected controls suggesting modulation of microbiota in the mouth by HIV and/or its treatments. Earlier ART initiation was not associated with microbiota profile. Proximal factors, including current ART regimen, were associated with contemporaneous profile of oral microbiota and may have masked associations with distal factors such as age at ART initiation.


Subject(s)
HIV Infections , Microbiota , Male , Child , Humans , HIV Infections/drug therapy , South Africa , RNA, Ribosomal, 16S/genetics , Mouth
6.
Int J Med Microbiol ; 313(3): 151580, 2023 May.
Article in English | MEDLINE | ID: mdl-37121094

ABSTRACT

Allogeneic Hematopoietic Cell Transplantation (HCT) offers children with life-threatening diseases a chance at survival. Complications from graft-versus-host disease (GVHD, Stages 0-4) represent a significant cause of morbidity and mortality which has been recently associated with gut dysbiosis the adult HCT population. Here, our objective was to conduct a prospective, longitudinal cohort study in nine pediatric allogeneic HCT participants by collecting longitudinally post-HCT stool specimens up to 1 year. Stool microbiota analyses showed that allogeneic HCT and antibiotic therapy lead to acute shifts in the diversity of the gut microbiota with those experiencing stages 3-4 gut GVHD having significantly greater microbiota variation over time when compared to control participants (p = 0.007). Pre-HCT microbiota diversity trended towards an inverse relationship with gut microbiota stability over time, however, this did not reach statistical significance (p = 0.05). Future large prospective studies are necessary to elucidate the mechanisms underlying these dynamic changes in the gut microbiota following pediatric allogeneic HCT.


Subject(s)
Gastrointestinal Microbiome , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Adult , Humans , Child , Prospective Studies , Longitudinal Studies , Graft vs Host Disease/etiology , Graft vs Host Disease/therapy , Hematopoietic Stem Cell Transplantation/adverse effects
7.
Cell ; 186(6): 1115-1126.e8, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36931242

ABSTRACT

Previously, two men were cured of HIV-1 through CCR5Δ32 homozygous (CCR5Δ32/Δ32) allogeneic adult stem cell transplant. We report the first remission and possible HIV-1 cure in a mixed-race woman who received a CCR5Δ32/Δ32 haplo-cord transplant (cord blood cells combined with haploidentical stem cells from an adult) to treat acute myeloid leukemia (AML). Peripheral blood chimerism was 100% CCR5Δ32/Δ32 cord blood by week 14 post-transplant and persisted through 4.8 years of follow-up. Immune reconstitution was associated with (1) loss of detectable replication-competent HIV-1 reservoirs, (2) loss of HIV-1-specific immune responses, (3) in vitro resistance to X4 and R5 laboratory variants, including pre-transplant autologous latent reservoir isolates, and (4) 18 months of HIV-1 control with aviremia, off antiretroviral therapy, starting at 37 months post-transplant. CCR5Δ32/Δ32 haplo-cord transplant achieved remission and a possible HIV-1 cure for a person of diverse ancestry, living with HIV-1, who required a stem cell transplant for acute leukemia.


Subject(s)
Cord Blood Stem Cell Transplantation , HIV Infections , HIV-1 , Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Male , Adult , Female , Humans , Fetal Blood , Leukemia, Myeloid, Acute/therapy
8.
Front Immunol ; 14: 1100594, 2023.
Article in English | MEDLINE | ID: mdl-36860850

ABSTRACT

Introduction: While antibodies raised by SARS-CoV-2 mRNA vaccines have had compromised efficacy to prevent breakthrough infections due to both limited durability and spike sequence variation, the vaccines have remained highly protective against severe illness. This protection is mediated through cellular immunity, particularly CD8+ T cells, and lasts at least a few months. Although several studies have documented rapidly waning levels of vaccine-elicited antibodies, the kinetics of T cell responses have not been well defined. Methods: Interferon (IFN)-γ enzyme-linked immunosorbent spot (ELISpot) assay and intracellular cytokine staining (ICS) were utilized to assess cellular immune responses (in isolated CD8+ T cells or whole peripheral blood mononuclear cells, PBMCs) to pooled peptides spanning spike. ELISA was performed to quantitate serum antibodies against the spike receptor binding domain (RBD). Results: In two persons receiving primary vaccination, tightly serially evaluated frequencies of anti-spike CD8+ T cells using ELISpot assays revealed strikingly short-lived responses, peaking after about 10 days and becoming undetectable by about 20 days after each dose. This pattern was also observed in cross-sectional analyses of persons after the first and second doses during primary vaccination with mRNA vaccines. In contrast, cross-sectional analysis of COVID-19-recovered persons using the same assay showed persisting responses in most persons through 45 days after symptom onset. Cross-sectional analysis using IFN-γ ICS of PBMCs from persons 13 to 235 days after mRNA vaccination also demonstrated undetectable CD8+ T cells against spike soon after vaccination, and extended the observation to include CD4+ T cells. However, ICS analyses of the same PBMCs after culturing with the mRNA-1273 vaccine in vitro showed CD4+ and CD8+ T cell responses that were readily detectable in most persons out to 235 days after vaccination. Discussion: Overall, we find that detection of spike-targeted responses from mRNA vaccines using typical IFN-γ assays is remarkably transient, which may be a function of the mRNA vaccine platform and an intrinsic property of the spike protein as an immune target. However, robust memory, as demonstrated by capacity for rapid expansion of T cells responding to spike, is maintained at least several months after vaccination. This is consistent with the clinical observation of vaccine protection from severe illness lasting months. The level of such memory responsiveness required for clinical protection remains to be defined.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , 2019-nCoV Vaccine mRNA-1273 , Cross-Sectional Studies , Leukocytes, Mononuclear , COVID-19/prevention & control , Vaccination , Cytokines , Antibodies, Viral , Enzyme-Linked Immunospot Assay
9.
J Cardiothorac Vasc Anesth ; 37(5): 758-766, 2023 05.
Article in English | MEDLINE | ID: mdl-36842938

ABSTRACT

OBJECTIVES: There have been sporadic reports of ischemic spinal cord injury (SCI) during venoarterial extracorporeal membrane oxygenation (VA-ECMO) support. The authors observed a troubling pattern of this catastrophic complication and evaluated the potential mechanisms of SCI related to ECMO. DESIGN: This study was a case series. SETTING: This study was performed at a single institution in a University setting. PARTICIPANTS: Patients requiring prolonged VA-ECMO were included. INTERVENTIONS: No interventions were done. This was an observational study. MEASUREMENTS AND MAIN RESULTS: Four hypotheses of etiology were considered: (1) hypercoagulable state/thromboembolism, (2) regional hypoxia/hypocarbia, (3) hyperperfusion and spinal cord edema, and (4) mechanical coverage of spinal arteries. The SCI involved the lower thoracic (T7-T12 level) spinal cord to the cauda equina in all patients. Seven out of 132 (5.3%) patients with prolonged VA-ECMO support developed SCI. The median time from ECMO cannulation to SCI was 7 (range: 6-17) days.There was no evidence of embolic SCI or extended regional hypoxia or hypocarbia. A unilateral, internal iliac artery was covered by the arterial cannula in 6/7 86%) patients, but flow into the internal iliac was demonstrated on imaging in all available patients. The median total flow (ECMO + intrinsic cardiac output) was 8.5 L/min (LPM), and indexed flow was 4.1 LPM/m2. The median central venous oxygen saturation was 88%, and intracranial pressure was measured at 30 mmHg in one patient, suggestive of hyperperfusion and spinal cord edema. CONCLUSIONS: An SCI is a serious complication of extended peripheral VA-ECMO support. Its etiology remains uncertain, but the authors' preliminary data suggested that spinal cord edema from hyperperfusion or venous congestion could contribute.


Subject(s)
Extracorporeal Membrane Oxygenation , Spinal Cord Injuries , Spinal Cord Ischemia , Humans , Extracorporeal Membrane Oxygenation/adverse effects , Extracorporeal Membrane Oxygenation/methods , Spinal Cord Injuries/diagnostic imaging , Spinal Cord Injuries/etiology , Spinal Cord Injuries/therapy , Spinal Cord Ischemia/diagnostic imaging , Spinal Cord Ischemia/etiology , Hypoxia/etiology , Hypoxia/therapy , Infarction , Retrospective Studies
10.
J Acquir Immune Defic Syndr ; 92(2): 153-161, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36215957

ABSTRACT

BACKGROUND: We studied the pharmacokinetics (PK) and safety of 100-mg doravirine and doravirine/lamivudine/tenofovir disoproxil fumarate fixed-dose combination (100/300/300 mg DOR FDC) treatment in adolescents with HIV-1. METHODS: Adolescents ages 12 to younger than 18 years were enrolled in 2 sequential cohorts. Cohort 1 evaluated intensive PK and short-term safety of 100-mg single-dose doravirine in adolescents ≥35 kg. Cohort 2 participants either initiated treatment with DOR FDC (antiretroviral (ARV)-naïve) or switched to DOR FDC from a previous ARV regimen (virologically suppressed). The first 10 Cohort 2 participants had intensive PK evaluations, and safety, sparse PK, and HIV RNA were assessed through week 24. RESULTS: Fifty-five adolescents, median age 15.0 years and baseline weight 51.5 kg, were enrolled. Nine participants completed Cohort 1 PK assessments (8 of the 9 participants weighed ≥45 kg) and 45 initiated study drug in Cohort 2. The doravirine geometric mean (GM) AUC 0-∞ was 34.8 µM∙hour, and the GM C 24 was 514 nM after a single dose, with a predicted steady-state GM C 24,ss,pred of 690 nM. Cohort 2 enrolled adolescents weighing ≥45 kg. Plasma concentrations of doravirine, tenofovir, and lamivudine achieved by Cohort 2 participants were similar to those reported in adults. No drug-related serious or grade 3 or 4 adverse events occurred. Forty-two of 45 participants (93.3%; 95% CI: [81.7, 98.6]) achieved or maintained HIV-1 RNA <40 copies/mL. CONCLUSIONS: Doravirine and DOR FDC achieved target PK in adolescents with HIV-1. DOR FDC was well-tolerated and maintained excellent virologic efficacy through 24 weeks, offering a favorable option for adolescents.


Subject(s)
Anti-HIV Agents , HIV Infections , HIV Seropositivity , HIV-1 , Adult , Humans , Adolescent , Child , Lamivudine/adverse effects , Lamivudine/pharmacokinetics , Anti-HIV Agents/adverse effects , Anti-HIV Agents/pharmacokinetics , HIV Infections/drug therapy , Tenofovir/therapeutic use , Anti-Retroviral Agents/therapeutic use , Pyridones/therapeutic use , HIV Seropositivity/drug therapy , RNA, Viral , Tablets , Emtricitabine/therapeutic use
11.
J Infect Dis ; 227(2): 236-245, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36082433

ABSTRACT

BACKGROUND: There are limited data on how coronavirus disease 2019 (COVID-19) severity, timing of infection, and subsequent vaccination impact transplacental transfer and persistence of maternal and infant antibodies. METHODS: In a longitudinal cohort of pregnant women with polymerase chain reaction-confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, maternal/infant sera were collected at enrollment, delivery/birth, and 6 months. Anti-SARS-CoV-2 spike immunoglobulin (Ig)G, IgM, and IgA were measured by enzyme-linked immunosorbent assay. RESULTS: Two-hundred fifty-six pregnant women and 135 infants were enrolled; 148 maternal and 122 neonatal specimens were collected at delivery/birth; 45 maternal and 48 infant specimens were collected at 6 months. Sixty-eight percent of women produced all anti-SARS-CoV-2 isotypes at delivery (IgG, IgM, IgA); 96% had at least 1 isotype. Symptomatic disease and vaccination before delivery were associated with higher maternal IgG at labor and delivery. Detectable IgG in infants dropped from 78% at birth to 52% at 6 months. In the multivariate analysis evaluating factors associated with detectable IgG in infants at delivery, significant predictors were 3rd trimester infection (odds ratio [OR] = 4.0), mild/moderate disease (OR = 4.8), severe/critical disease (OR = 6.3), and maternal vaccination before delivery (OR = 18.8). No factors were significant in the multivariate analysis at 6 months postpartum. CONCLUSIONS: Vaccination in pregnancy post-COVID-19 recovery is a strategy for boosting antibodies in mother-infant dyads.


Subject(s)
COVID-19 , Mothers , Pregnancy , Infant, Newborn , Female , Infant , Humans , SARS-CoV-2 , Immunoglobulin A , Immunoglobulin G , Immunoglobulin M , Antibodies, Viral
12.
EBioMedicine ; 84: 104286, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36179550

ABSTRACT

BACKGROUND: Alterations in the gut microbiome have been associated with HIV infection, but the relative impact of HIV versus other factors on the gut microbiome has been difficult to determine in cross-sectional studies. METHODS: To address this, we examined the gut microbiome, serum metabolome, and cytokines longitudinally within 27 individuals before and during acute HIV using samples collected from several ongoing cohort studies. Matched control participants (n=28) from the same cohort studies without HIV but at similar behavioral risk were used for comparison. FINDINGS: We identified few changes in the microbiome during acute HIV infection, but did find alterations in serum metabolites involving secondary bile acid (lithocholate sulfate, glycocholenate sulfate) and amino acid metabolism (3-methyl-2-oxovalerate, serine, cysteine, N-acetylputrescine). Greater microbiome differences, including decreased Bacteroides spp and increased Megasphaera elsdenii, were seen when comparing pre-HIV infection visits to matched at-risk controls. Those who acquired HIV also had elevated inflammatory cytokines (TNF-α, B cell activating factor, IL-8) and bioactive lipids (palmitoyl-sphingosine-phosphoethanolamide and glycerophosphoinositol) prior to HIV acquisition compared to matched controls. INTERPRETATION: Longitudinal sampling identified pre-existing microbiome differences in participants with acute HIV compared to matched control participants observed over the same period. These data highlight the importance of increasing understanding of the role of the microbiome in HIV susceptibility. FUNDING: This work was supported by NIH/NIAID (K08AI124979; P30AI117943), NIH/NIDA (U01DA036267; U01DA036939; U01DA036926; U24DA044554), and NIH/NIMH (P30MH058107; R34MH105272).


Subject(s)
Dysbiosis , HIV Infections , B-Cell Activating Factor , Bile Acids and Salts , Biomarkers , Cross-Sectional Studies , Cysteine , Humans , Interleukin-8 , Lipids , Lithocholic Acid , Serine , Seroconversion , Sphingosine , Sulfates , Tumor Necrosis Factor-alpha
13.
mBio ; 13(5): e0164722, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36000735

ABSTRACT

Despite the robust immunogenicity of SARS-CoV-2 mRNA vaccines, emerging data have revealed enhanced neutralizing antibody and T cell cross-reactivity among individuals that previously experienced COVID-19, pointing to a hybrid immune advantage with infection-associated immune priming. Beyond neutralizing antibodies and T cell immunity, mounting data point to a potential role for additional antibody effector functions, including opsinophagocytic activity, in the resolution of symptomatic COVID-19. Whether hybrid immunity modifies the Fc-effector profile of the mRNA vaccine-induced immune response remains incompletely understood. Thus, here we profiled the SARS-CoV-2 specific humoral immune response in a group of individuals with and without prior COVID-19. As expected, hybrid Spike-specific antibody titers were enhanced following the primary dose of the mRNA vaccine but were similar to those achieved by naive vaccinees after the second mRNA vaccine dose. Conversely, Spike-specific vaccine-induced Fc-receptor binding antibody levels were higher after the primary immunization in individuals with prior COVID-19 and remained higher following the second dose compared to those in naive individuals, suggestive of a selective improvement in the quality, rather than the quantity, of the hybrid humoral immune response. Thus, while the magnitude of antibody titers alone may suggest that any two antigen exposures-either hybrid immunity or two doses of vaccine alone-represent a comparable prime/boost immunologic education, we find that hybrid immunity offers a qualitatively improved antibody response able to better leverage Fc-effector functions against conserved regions of the virus. IMPORTANCE Recent data indicates improved immunity to SARS-CoV-2 in individuals who experience a combination of two mRNA vaccine doses and infection, "hybrid immunity," compared to individuals who receive vaccination or experience infection alone. While previous infection accelerates the vaccine-induced immune response following the first dose of mRNA vaccination, subsequent doses demonstrate negligible increases in antibody titers or T cell immunity. Here, using systems serology, we observed a unique antibody profile induced by hybrid immunity, marked by the unique induction of robust Fc-recruiting antibodies directed at the conserved region of the viral Spike antigen, the S2-domain, induced at lower levels in individuals who only received mRNA vaccination. Thus, hybrid immunity clearly redirects vaccine-induced immunodominance, resulting in the induction of a robust functional humoral immune response to the most highly conserved region of the SARS-CoV-2 Spike antigen, which may be key to protection against existing and emerging variants of concern. Thus, next-generation vaccines able to mimic hybrid immunity and drive a balanced response to conserved regions of the Spike antigen may confer enhanced protection against disease.


Subject(s)
COVID-19 , Viral Vaccines , Humans , COVID-19 Vaccines , SARS-CoV-2 , COVID-19/prevention & control , Antibodies, Viral , Antibodies, Neutralizing , Vaccination , RNA, Messenger , Spike Glycoprotein, Coronavirus/genetics , Immunity, Humoral , mRNA Vaccines
14.
Open Forum Infect Dis ; 9(7): ofac222, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35821728

ABSTRACT

The lower efficacy of the COVID-19 mRNA vaccines in 5-11 year old children was unexpected. Neutralizing antibody titers elicited by the vaccines in children, adolescents, and young adults suggest that the lower efficacy is not due to the lower dosage. Confirming the efficacy of these vaccines in children, determining if mRNA vaccination strategies are less effective in younger children, as well as optimizing the dosage, dosing intervals, and number of doses needed in children, adolescents, and young adults are critical to improve vaccination strategies for these populations going forward.

15.
Front Immunol ; 13: 835830, 2022.
Article in English | MEDLINE | ID: mdl-35273611

ABSTRACT

CD8+ T cells have key protective roles in many viral infections. While an overall Th1-biased cellular immune response against SARS-CoV-2 has been demonstrated, most reports of anti-SARS-CoV-2 cellular immunity have evaluated bulk T cells using pools of predicted epitopes, without clear delineation of the CD8+ subset and its magnitude and targeting. In recently infected persons (mean 29.8 days after COVID-19 symptom onset), we confirm a Th1 bias (and a novel IL-4-producing population of unclear significance) by flow cytometry, which does not correlate to antibody responses against the receptor binding domain. Evaluating isolated CD8+ T cells in more detail by IFN-γ ELISpot assays, responses against spike, nucleocapsid, matrix, and envelope proteins average 396, 901, 296, and 0 spot-forming cells (SFC) per million, targeting 1.4, 1.5, 0.59, and 0.0 epitope regions respectively. Nucleocapsid targeting is dominant in terms of magnitude, breadth, and density of targeting. The magnitude of responses drops rapidly post-infection; nucleocapsid targeting is most sustained, and vaccination selectively boosts spike targeting. In SARS-CoV-2-naïve persons, evaluation of the anti-spike CD8+ T cell response soon after vaccination (mean 11.3 days) yields anti-spike CD8+ T cell responses averaging 2,463 SFC/million against 4.2 epitope regions, and targeting mirrors that seen in infected persons. These findings provide greater clarity on CD8+ T cell anti-SARS-CoV-2 targeting, breadth, and persistence, suggesting that nucleocapsid inclusion in vaccines could broaden coverage and durability.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , Nucleocapsid/immunology , SARS-CoV-2/physiology , Antibodies, Viral/metabolism , Broadly Neutralizing Antibodies/metabolism , Cells, Cultured , Enzyme-Linked Immunospot Assay , Humans , Molecular Targeted Therapy , Peptides/genetics , Peptides/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , United States , Vaccination
16.
Pediatr Res ; 92(4): 1140-1145, 2022 10.
Article in English | MEDLINE | ID: mdl-35042956

ABSTRACT

BACKGROUND: Genomic RNA of severe acute respiratory syndrome-associated coronavirus type 2 (SARS-CoV-2) has been detected in the breast milk of lactating women, but its pathological significance has remained uncertain due to the small size of prior studies. METHODS: Breast milk from 110 lactating women was analyzed by reverse transcription-polymerase chain reaction (285 samples) and viral culture (160 samples). Those containing SARS-CoV-2 viral RNA (vRNA) were examined for the presence of subgenomic RNA (sgRNA), a putative marker of infectivity. RESULTS: Sixty-five women had a positive SARS-CoV-2 diagnostic test, 9 had symptoms but negative diagnostic tests, and 36 symptomatic women were not tested. SARS-CoV-2 vRNA was detected in the milk of 7 (6%) women with either a confirmed infection or symptomatic illness, including 6 of 65 (9%) women with a positive SARS-CoV-2 diagnostic test. Infectious virus was not detected in any culture and none had detectable sgRNA. In control experiments, infectious SARS-CoV-2 could be cultured after addition to breastmilk despite several freeze-thaw cycles, as it occurs in the storage and usage of human milk. CONCLUSIONS: SARS-CoV-2 RNA can be found infrequently in the breastmilk after recent infection, but we found no evidence that breastmilk contains an infectious virus or that breastfeeding represents a risk factor for transmission of infection to infants. IMPACT: This article goes beyond prior small studies to provide evidence that infectious SARS-CoV-2 is not present in the milk of lactating women with recent infection, even when SARS-CoV-2 RNA is detected. Recent SARS-CoV-2 infection or detection of its RNA in human milk is not a contraindication to breastfeeding.


Subject(s)
COVID-19 , Mastitis , Infant , Female , Humans , Male , SARS-CoV-2 , Milk, Human , RNA, Viral , COVID-19/diagnosis , Lactation , Breast Feeding
17.
AIDS ; 36(1): 49-58, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34873092

ABSTRACT

OBJECTIVE: The rectal microbiome was examined to assess the relationship between the microbiome and liver disease in HIV-infection. DESIGN: Eighty-two HIV-1 mono-infected individuals from the PROSPEC-HIV-study (NCT02542020) were grouped into three liver health categories based on results of controlled attenuation parameter (CAP) and liver stiffness measurement (LSM) of transient elastography: normal (n = 30), steatosis (n = 30), or fibrosis (n = 22). METHODS: Liver steatosis and fibrosis were defined by CAP at least 248 dB/m and LSM at least 8.0 kPa, respectively. 16S rRNA gene and whole genome shotgun metagenomic sequencing were performed on rectal swabs. Bacterial differences were assessed using zero-inflated negative binomial regression and random forests modeling; taxonomic drivers of functional shifts were identified using FishTaco. RESULTS: Liver health status explained four percentage of the overall variation (r2 = 0.04, P = 0.003) in bacterial composition. Participants with steatosis had depletions of Akkermansia muciniphila and Bacteroides dorei and enrichment of Prevotella copri, Finegoldia magna, and Ruminococcus bromii. Participants with fibrosis had depletions of Bacteroides stercoris and Parabacteroides distasonis and enrichment of Sneathia sanguinegens. In steatosis, functional analysis revealed increases in primary and secondary bile acid synthesis encoded by increased Eubacterium rectale, F. magna, and Faecalibacterium prausnitzii and decreased A. muciniphila, Bacteroides fragilis and B. dorei. Decreased folate biosynthesis was driven by similar changes in microbial composition. CONCLUSION: HIV mono-infection with steatosis or fibrosis had distinct microbial profiles. Some taxa are similar to those associated with non-alcoholic fatty liver disease in HIV-negative populations. Further studies are needed to define the role of the gut microbiota in the pathogenesis of liver disease in HIV-infected persons.


Subject(s)
Elasticity Imaging Techniques , Fatty Liver , HIV Infections , Liver Cirrhosis , Brazil/epidemiology , Fatty Liver/microbiology , Fatty Liver/pathology , HIV Infections/complications , HIV Infections/pathology , Humans , Liver/diagnostic imaging , Liver/pathology , Liver Cirrhosis/microbiology , Liver Cirrhosis/pathology , Non-alcoholic Fatty Liver Disease/microbiology , Non-alcoholic Fatty Liver Disease/pathology , Pilot Projects , RNA, Ribosomal, 16S/genetics
18.
Clin Infect Dis ; 74(7): 1166-1173, 2022 04 09.
Article in English | MEDLINE | ID: mdl-34292319

ABSTRACT

BACKGROUND: Sentiments of vaccine hesitancy and distrust in public health institutions have complicated the government-led coronavirus disease 2019 (COVID-19) vaccine control strategy in the United States. As the first to receive the vaccine, COVID-19 vaccine attitudes among frontline workers are consequential for COVID-19 control and public opinion of the vaccine. METHODS: In this study, we used a repeated cross-sectional survey administered at 3 time points between 24 September 2020 and 6 February 2021 to a cohort of employees of the University of California, Los Angeles Health and the Los Angeles County Fire Department. The primary outcome of interest was COVID-19 vaccination intent and vaccine uptake. RESULTS: Confidence in COVID-19 vaccines and vaccine uptake rose significantly over time. At survey 1, confidence in vaccine protection was 46.4% among healthcare workers (HCWs) and 34.6% among first responders (FRs); by survey 3, this had risen to 90.0% and 75.7%, respectively. At survey 1, about one-third of participants intended to receive a vaccine as soon as possible. By survey 3, 96.0% of HCWs and 87.5% of FRs had received a COVID-19 vaccine. CONCLUSIONS: Attitudes toward vaccine uptake increased over the study period, likely a result of increased public confidence in COVID-19 vaccines, targeted communications, a COVID-19 winter surge in Los Angeles County, and ease of access from employer-sponsored vaccine distribution.


Subject(s)
COVID-19 , Vaccines , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Cross-Sectional Studies , Health Personnel , Humans , Los Angeles/epidemiology , Vaccination
19.
PLoS One ; 16(11): e0259703, 2021.
Article in English | MEDLINE | ID: mdl-34748607

ABSTRACT

Two mRNA vaccines (BNT162b2 and mRNA-1273) against severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) are globally authorized as a two-dose regimen. Understanding the magnitude and duration of protective immune responses is vital to curbing the pandemic. We enrolled 461 high-risk health services workers at the University of California, Los Angeles (UCLA) and first responders in the Los Angeles County Fire Department (LACoFD) to assess the humoral responses in previously infected (PI) and infection naïve (NPI) individuals to mRNA-based vaccines (BNT162b2/Pfizer- BioNTech or mRNA-1273/Moderna). A chemiluminescent microparticle immunoassay was used to detect antibodies against SARS-CoV-2 Spike in vaccinees prior to (n = 21) and following each vaccine dose (n = 246 following dose 1 and n = 315 following dose 2), and at days 31-60 (n = 110) and 61-90 (n = 190) following completion of the 2-dose series. Both vaccines induced robust antibody responses in all immunocompetent individuals. Previously infected individuals achieved higher median peak titers (p = 0.002) and had a slower rate of decay (p = 0.047) than infection-naïve individuals. mRNA-1273 vaccinated infection-naïve individuals demonstrated modestly higher titers following each dose (p = 0.005 and p = 0.029, respectively) and slower rates of antibody decay (p = 0.003) than those who received BNT162b2. A subset of previously infected individuals (25%) required both doses in order to reach peak antibody titers. The biologic significance of the differences between previously infected individuals and between the mRNA-1273 and BNT162b2 vaccines remains uncertain, but may have important implications for booster strategies.


Subject(s)
COVID-19 Vaccines , COVID-19/immunology , COVID-19/prevention & control , Immunity, Humoral , SARS-CoV-2 , 2019-nCoV Vaccine mRNA-1273 , Academic Medical Centers , Antibodies, Viral/immunology , Antibody Formation , BNT162 Vaccine , California/epidemiology , Emergency Medical Services , Emergency Responders , Health Personnel , Humans , Immunoassay , RNA, Messenger/metabolism , Universities
20.
Cell Rep Med ; 2(11): 100453, 2021 11 16.
Article in English | MEDLINE | ID: mdl-34723226

ABSTRACT

While pregnancy increases the risk for severe COVID-19, the clinical and immunological implications of COVID-19 on maternal-fetal health remain unknown. Here, we present the clinical and immunological landscapes of 93 COVID-19 mothers and 45 of their SARS-CoV-2-exposed infants through comprehensive serum proteomics profiling for >1,400 cytokines of their peripheral and cord blood specimens. Prenatal SARS-CoV-2 infection triggers NF-κB-dependent proinflammatory immune activation. Pregnant women with severe COVID-19 show increased inflammation and unique IFN-λ antiviral signaling, with elevated levels of IFNL1 and IFNLR1. Furthermore, SARS-CoV-2 infection re-shapes maternal immunity at delivery, altering the expression of pregnancy complication-associated cytokines, inducing MMP7, MDK, and ESM1 and reducing BGN and CD209. Finally, COVID-19-exposed infants exhibit induction of T cell-associated cytokines (IL33, NFATC3, and CCL21), while some undergo IL-1ß/IL-18/CASP1 axis-driven neonatal respiratory distress despite birth at term. Our findings demonstrate COVID-19-induced immune rewiring in both mothers and neonates, warranting long-term clinical follow-up to mitigate potential health risks.


Subject(s)
COVID-19/immunology , Cytokines/blood , Inflammation , Proteomics , Adolescent , Adult , COVID-19/blood , COVID-19/metabolism , Female , Humans , Infant, Newborn , Mothers , Pregnancy , Serum/metabolism , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...